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Welcome to the non-commutative world

classical non-commutative

C (Ω) for Ω compact Hausdorff unital C∗-algebra A
L∞(Ω,F) for (Ω,F) measurable W∗-algebra M

A C∗-algebra is ∗-subalgebra of B(H), closed with respect to the operator
norm. Every commutative unital C∗-algebra is isomorphic to C (Ω) for
some compact Hausdorff space Ω.

A W∗-algebra (or von Neumann algebra) is a ∗-subalgebra of B(H), closed
with respect to the weak operator topology. Every commutative
W∗-algebra is isomorphic to L∞(Ω,F) for some measurable space (Ω,F).
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Welcome to the non-commutative world

classical non-commutative

C (Ω) for Ω compact Hausdorff unital C∗-algebra A
probability measure µ on Ω state φ on A

L∞(Ω,F) with prob. measure µ W∗-algebra M with normal state φ

A state on a unital C∗-algebra A is a linear functional satisfying φ(1) = 1
and φ(a∗a) ≥ 0.

By the Riesz representation theorem, every state on C (Ω) has the form
φ(f ) =

∫
f dµ for a Borel probability measure µ.

Given a state on a C∗-algebra A, one can create a separation-completion
of A into a von Neumann algebra M that is faithfully represented on the
GNS space L2(A, φ). This is the non-commutative version of passing from
C (Ω) to L∞(Ω, µ).
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Traces are nicer

classical non-commutative

C (Ω) for Ω compact Hausdorff unital C∗-algebra A
probability measure µ on Ω trace τ on A

L∞(Ω,F) with prob. measure µ W∗-algebra M with faithful normal trace τ

A trace on A is a state that satisfies τ(xy) = τ(yx). In the commutative
case, every state is a trace. Traces are nice because they “behave more
like finite measures than general states.”

The non-commutative world is much more complicated . . .
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We are no longer in Kansas

Classical: Two complete probability spaces (Ω1, µ1) and (Ω2, µ2) are
isomorphic if and only if the atoms of µ1 and µ2 have the same sizes. In
particular, if µ1 and µ2 are diffuse (no atoms), then the two measure
spaces are isomorphic (in other words, µ1 can be transported to µ2 by
some essentially bijective function).

Every probability space occurs as a quotient of [0, 1] with Lebesgue
measure.

Non-commutative: (McDuff) There are continuum many non-isomorphic
WOT-separable II1-factors (a II1-factor is a tracial W∗-algebra with trivial
center which is “diffuse”).

(Ozawa) There is no WOT-separable II1 factor that contains an
isomorphic copy of all other WOT-separable II1 factors.
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We are no longer in Kansas

Classical: Consider the space of Borel probability measures on [−R,R]d .
Finite linear combinations of δ masses are dense in the weak-∗ topology.

Non-commutative: Let Σd ,R be the space of traces on the universal free
product C ([−R,R])∗d . Such a trace represents the non-commutative law
of a d-tuple of self-adjoint operators (X1, . . . ,Xd) from a tracial
W∗-algebra (M, τ) with ‖Xi‖ ≤ R. Indeed, a trace on C ([−R,R])d is
obtained by composing τ with the ∗-homomorphism C ([−R,R])∗d →M
that sends the canonical generators to X1, . . . , Xd .

One non-commutative analogue of finitely supported measures would be
the non-commutative laws of d-tuples from finite-dimensional tracial
W∗-algebras. For such “finitary” laws to be dense in Σd ,R is equivalent to
the long-standing Connes embedding problem which has recently been
shown to have a negative solution through an equivalent formulation in
quantum information theory (Ji, Natarajan, Vidick, Wright, and Yuen).
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Building a bridge

random
matrices

W∗-algebras
free

probability

At this point, it should be clear that non-commutative transport of
measure does not always exist. However, certain tuples (X1, . . . ,Xd) from
(M, τ) can be very well approximated by d-tuples of random self-adjoint
matrices, in light of several fundamental results in free probability theory
(due to Voiculescu, Guionnet, and many others). This gives us some hope
that classical results about transport of measure might be carried over to
the non-commutative setting in special cases.
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Free Gibbs laws

Free Gibbs laws are non-commutative laws which arise as the large-N limit
of certain random matrix models.

Consider a probability measure µ(N) on MN(C)dsa (d-tuples of self-adjoint
matrices) given by

dµ(N)(x) = constant e−N
2V (N)(x) dx ,

where dx is Lebesgue measure and V (N) : MN(C)dsa → R is some function
“with a formula independent of N,” something like

V (N)(x1, . . . , xd) =
1

N
Tr(p(x1, . . . , xd)),

where p is a non-commutative polynomial. Let X (N) = (X
(N)
1 , . . . ,X

(N)
d )

be a random d-tuple of matrices chosen according to the measure µ(N).
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Free Gibbs laws

Let ‖x‖2 = (
∑d

j=1(1/N) Tr(x∗j xj))1/2.

Theorem (≈ Guionnet & Maurel-Segala 2006, Guionnet &
Shlyakhtenko 2009, Guionnet & Shlyakhtenko & Dabrowski 2016)

Suppose that V (N)(x) = (1/N) Tr(f (x)) where f is a non-commutative
polynomial or power series and that V (N)(x)− (c/2)‖x‖2

2 is convex for
some c > 0. Then there exists some d-tuple X from a tracial W∗-algebra
(M, τ) such that

lim
N→∞

1

N
Tr(p(X (N))) = τ(p(X ))

almost surely for every non-commutative polynomial p.

Remark

The limit is deterministic, which makes sense given the phenomenon of
concentration of measure in high dimensions (cf. Bakry-Émery criterion).
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The free Gaussian

In the case where V (N)(x) = (1/2)‖x‖2
2, the random matrix S (N) is called

the Gaussian unitary ensemble.

(Wigner) The spectral distribution of each S
(N)
j converges to the

semicircle law (1/2π)
√

4− t2χ[−2,2](t) dt.

(Voiculescu) The matrices S (N) become asymptotically freely independent
as N →∞, and as a consequence the W∗-algebra generated by S is
isomorphic to the free group W∗-algebra L(Fd).

S is called a standard free semicircular family, and we will denote its
non-commutative law by σ. This is a canonical non-commutative law that
we hope to transport other non-commutative laws to.
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Non-commutative tranport of measure

Theorem (Guionnet & Shlyakhtenko 2014, Dabrowski & Guionnet &
Shlyakhtenko 2016)

Let X (N) and X be as in the previous theorem. Then the associated von
Neumann algebra W ∗(X1, . . . ,Xd) is isomorphic to L(Fd) (the Gaussian
case).

One natural proof strategy:

Let S (N) be a Gaussian unitary ensemble, let σ(N) be the associated
probability measure, and let S be a free semicircular family describing
the large-N limit.

Using classical techniques (see e.g. Otto-Villani 2000), you can
construct some bijective function F (N) such that (F (N))∗µ

(N) = σ(N)

or equivalently F (N)(X (N)) ∼ S (N) in distribution.

Note that F (N) describes an isomorphism between (MN(C)dsa, µ
(N))

and (MN(C)dsa, σ
(N)).
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Non-commutative transport of measure

Arrange and prove that F (N) has good asymptotic behavior as
N →∞, and it approaches some non-commutative function F in the
limit. (But what does this mean??)

Same for inverse function of F (N).

Then F (X ) ∼ S in non-commutative law, and we get an isomorphism
W∗(X ) ∼= W∗(S).

This strategy, so to speak, imports the classical results about transport of
measure into the non-commutative world across the bridge of free
probability.

The papers mentioned above did not actually prove it this way; they
worked directly at the level of the non-commutative random variables X
and S . They deduced a posteriori that their non-commutative transport
functions approximated the matrix optimal transport functions in L2.

David Jekel (UCSD) Non-commutative transport of measure for operator algebrasAugust 10, 2020 12 / 19



A new functional calculus

In order to carry out our strategy, we want to define an appropriate space
of “functions of d non-commuting self-adjoint variables” which will
contain our hypothetical F .

While the non-commutative or fully matricial functions of Taylor are a
good model for “non-commutative complex analysis,” our aims here are
more in the spirit of real analysis and PDE, and we wish to incorporate the
trace into our construction of functions.

Classical continuous functions on Rd can be approximated uniformly on
balls by polynomials. In the same way, our functions will be approximated
on operator-norm balls by trace polynomials, functions such as

f (x1, x2, x3) = tr(x1)x2
2 + tr(x1x3) tr(x2)x3x1x2 − 2 tr(x2

3 ).
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A new functional calculus

If f is a d-variable trace polynomial and (M, τ) is a tracial W∗-algebra
and X ∈Md

sa, then f can be evaluated on X by substituting X1, . . . , Xd

and τ for the formal symbols x1, . . . , xd and tr.

We define a uniform 2-norm on the R-ball for trace polynomials by

‖f ‖2,R = sup{‖f (X )‖2 : X ∈Md
sa, (M, τ) tracial W∗-algebra, ‖Xj‖ ≤ R},

where ‖Y ‖2 = τ(Y ∗Y ). Let TrPd be the completion of the space of trace
polynomials with respect to the family of seminorms (‖·‖2,R)R>0.

Remark

Since we are using the 2-norm rather than operator norm, the functions
defined in this way are not the direct analogue of C (Rd) if we think that
continuous functions on compact sets correspond to C∗-algebras.
However, these functions are continuous with respect to ‖·‖2 on each
operator-norm ball.
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Asymptotic approximation

The functions defined above make sense to evaluate on any d-tuple of
self-adjoint operators from a tracial W∗-algebra. In particular, they can be
evaluated on d-tuples of self-adjoint matrices (where we use the
normalized trace (1/N) Tr on MN(C)).

Thus, TrPd is suitable for describing the asymptotic behavior of certain
sequences of functions f (N) on MN(C)dsa. The notion of asymptotic
approximation uses (again) uniform approximation with respect to ‖·‖2 on
an operator-norm ball.

Definition

Let f (N) : MN(C)dsa → MN(C). We say that f (N)  f if for every R > 0,
we have

lim
N→∞

sup{‖f (N)(x)− f (x)‖2 : x ∈ MN(C)dsa, ‖xj‖ ≤ R} = 0.
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Asymptotic approximation

This notion of asymptotic approximation f (N)  f is preserved under the
following operations (with mild hypotheses on the functions in question):

Linear combinations.

Composition.

Limits.

Application of the heat semigroup et∆/N on functions on MN(C)dsa.
(This is where it is important to use trace polynomials rather than
merely non-commutative polynomials.)

Combining and iterating these operations allow us to “build” many
sequences of functions associated to the random matrix measures µ(N),
and hence to get control over their asymptotic behavior as N →∞. In
particular, we can build certain functions transporting µ(N) to σ(N)

(constructed by the same methods as in Otto and Villani’s proof of the
Talagrand inequality). This is a bunch of technical work.
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Non-commutative transport of measure revisited

Theorem (J. 2018-2019)

Suppose that V (N) : MN(C)dsa → R satisfies that V (N)(x)− (c/2)‖x‖2
2 is

convex and V (N)(x)− (C/2)‖x‖2
2 is concave for some 0 < c < C, and

suppose that ∇V (N) is asymptotic to some f ∈ (TrPd)dsa as N →∞. Let
X (N) be the associated random matrix tuple as above. Then there exists
some d-tuple X from a tracial W∗-algebra (M, τ) such that

lim
N→∞

1

N
Tr(p(X (N))) = τ(p(X ))

almost surely for every non-commutative polynomial p. Also, there exist
some F ,G ∈ (TrPd)dsa such that F ◦ G = G ◦ F = id and F (X ) ∼ S.
Furthermore, F is obtained as the large-N limit of some F (N) with
F (N)(X (N)) = S (N).
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Triangular transport of measure

Theorem (J. 2019)

We can arrange that F (N) and F are lower-triangular functions in the
sense that

F (x1, . . . , xd) = (F1(x1),F2(x1, x2), . . . ,Fd(x1, . . . , xd)).

This implies that there is an isomorphism
φ : W∗(X1, . . . ,Xd)→W∗(S1, . . . ,Sd) such that

φ(W∗(X1, . . . ,Xk)) = W∗(S1, . . . ,Sk) for k = 1, . . . , d .

The idea of the proof is to transport the conditional distribution of Xd

given X1, . . . , Xd−1 to that of a Gaussian independent of X1, . . . , Xd−1,
then transport the conditional distribution of Xd−1 given X1, . . . , Xd−2 to
Gaussian, and so forth.
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Work in progress and goals

Define a tracial non-commutative analogue of C k(Rd).

Triangular transport for the C∗-algebras generated by X and S , not
just the W∗-algebras.

Develop non-commutative PDE theory.

Find easier constructions of transport.

Study non-commutative optimal transport.

What happens when the convexity assumption on V is removed?
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