An operatorial viewpoint on Loewner chains in the complex upper half-plane

David A. Jekel

University of California, Los Angeles

April 17, 2020

David A. Jekel (UCLA)

Operatorial viewpoint on Loewner chains

April 17, 2020 1 / 45

Instead of a formal thesis defense, I am giving a series of talks explaining results in my dissertation, intended to be accessible for general mathematicians.

Dissertation committee: Dimitri Shlyakhtenko (chair), Sorin Popa, Terence Tao, Mario Bonk

Dissertation title: Evolution Equations in Non-commutative Probability

This talks includes some results from the paper "Operator-valued Loewner chains and non-commutative probability", Journal of Functional Analysis 278.10:108452, which will also be in my dissertation.

2/45

Goal: This talk will motivate the connections between complex analysis and non-commutative probability (the theory of operators on Hilbert space as "random variables"). We start from the viewpoint of complex analysis. Non-commutative probability in its own right will be explained in the next talk.

Prerequisites: Complex analysis, measure theory, Hilbert spaces and self-adjoint operators.

1 Cauchy transform representation of functions

- Operator models for Cauchy transforms
- 3 Operator model for composition
- Operator models for Loewner chains

1 Cauchy transform representation of functions

- 2 Operator models for Cauchy transforms
- Operator model for composition
- Operator models for Loewner chains

We begin with a famous result of Nevanlinna that relates certain analytic functions on the upper half-plane with Borel measures on \mathbb{R} .

The upper and lower half-planes are the regions

$$\mathbb{H}_+ = \{ z \in \mathbb{C} : \operatorname{im} z > 0 \}$$
$$\mathbb{H}_- = \{ z \in \mathbb{C} : \operatorname{im} z > 0 \}.$$

If μ is a finite Borel measure on $\mathbb R,$ the Cauchy transform of μ is the function

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-x} \, d\mu(x).$$

If im z>0, then im $(z-x)^{-1}<0$, and hence ${\cal G}_\mu$ maps ${\mathbb H}_+$ to ${\mathbb H}_-.$

If μ is a compactly supported, then $G_{\mu}(z)$ is analytic in a neighborhood of ∞ , and we have a power series expansion:

$$\begin{aligned} G_{\mu}(z) &= \frac{1}{z} \int_{\mathbb{R}} \frac{1}{1 - t/z} \, d\mu(t) \\ &= \frac{1}{z} \int_{\mathbb{R}} \sum_{n=0}^{\infty} \left(\frac{x}{z}\right)^n \, d\mu(x) \\ &= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \int_{\mathbb{R}} x^n \, d\mu(x). \end{aligned}$$

The quantity $\mu_n := \int_{\mathbb{R}} x^n d\mu(x)$ is called the *nth moment of* μ , and thus $G_{\mu}(z)$ is a kind of *moment generating function for* μ .

Nevanlinna's theorem

Nevanlinna showed that *any* analytic function $G : \mathbb{H}_+ \to \mathbb{H}_-$ with $\limsup_{y \to +\infty} y | \operatorname{im} G(iy) | < +\infty$ can be represented as G_{μ} for some finite Borel measure μ . We will focus on the compactly supported case.

Proposition

An analytic function $G : \mathbb{H}_+ \to \mathbb{H}_-$ is the Cauchy transform of a compactly supported measure μ if and only if G(z) has an analytic extension to a neighborhood of ∞ satisfying $G(\overline{z}) = \overline{G(z)}$. Moreover, in this case, we have $G(z) = \|\mu\|/z + O(1/z^2)$, where $\|\mu\|$ is the total mass.

Remark

This is a powerful result because with only a few assumptions, we can represent the function G in the very special form G_{μ} , which in particular gives us good control over the derivatives of G since $G_{\mu}^{(k)}(z) = (-1)^k (k-1)! \int_{\mathbb{R}} (z-x)^{-k-1} d\mu(x).$

A D N A B N A B N A B N

Self-maps of the upper half-plane

Definition

The F-transform of a measure μ is the function $F_{\mu}:\mathbb{H}_+\to\mathbb{H}_+$ given by $F_{\mu}(z)=1/G_{\mu}(z).$

Corollary

A function $F : \mathbb{H}_+ \to \mathbb{H}_+$ is the *F*-transform of a compactly supported probability measure if and only if K(z) = z - F(z) has an extension to a neighborhood of ∞ with $K(\overline{z}) = \overline{K(z)}$.

Sketch of proof.

Let us just explain \Leftarrow . Let G(z) = 1/F(z) = 1/(z - K(z)). Since K(z) is analytic at ∞ , we can use the geometric series expansion $1/(z - K(z)) = (1/z) \sum_{n=0}^{\infty} (K(z)/z)^n$ to get the properties of G described in the previous proposition. $G(z) = 1/z + O(1/z^2)$, so the total mass of μ is 1. A *hull* is a compact set $S \subseteq \overline{\mathbb{H}}_+$ such that $\Omega := \mathbb{H}_+ \setminus S$ is simply connected.

The Riemann mapping theorem tells us that there is a conformal map $F : \mathbb{H}_+ \to \Omega$, which is analytic at ∞ . This F is unique if we impose the normalization F(z) = z + O(1/z).

Then if we write

$$F(z) = z - \frac{t}{z} + O\left(\frac{1}{z^2}\right),$$

the number t > 0 is called the *half-plane capacity* of the hull *S*, which is some measure of how "large" *S* is.

By the previous corollary, F can be represented as $F_{\mu} = 1/G_{\mu}$ for a compactly supported probability measure μ .

A power series computation reveals that

$$F_{\mu}(z) = z - \mu_1 - rac{\mu_2 - \mu_1^2}{z} + O\left(rac{1}{z^2}
ight).$$

Thus, our normalization of F on the previous slide is $\mu_1 = 0$, or the *mean* of μ is zero.

The half-plane capacity t is equal to $\mu_2 - \mu_1^2$, which is the variance of μ , a standard probabilistic measurement of how "spread out" μ is.

Cauchy transform representation of functions

Operator models for Cauchy transforms

Operator model for composition

David A. Jekel (UCLA)

Operator models for Loewner chains

Proposition

Let μ be a compactly supported probability measure on \mathbb{R} . Then there exists a real number *b* and a compactly supported measure on \mathbb{R} such that

$$F_{\mu}(z) = z - b - G_{\sigma}(z).$$

Conversely, every such pair (b, σ) has a corresponding μ .

There are several ways to prove this. For instance, it can be deduced from Nevanlinna's theorem above after showing that im $F_{\mu}(z) \ge \text{im } z$.

I'll give a proof using operators on Hilbert space, which contains the kernel of two important ideas in non-commutative probability theory:

- representing measures as spectral distributions of operators,
- 2 combinatorial manipulation of moment generating functions.

Operator representation of measures

Let μ be a compactly supported probability measure on \mathbb{R} . Consider the Hilbert space $L^2(\mu)$.

Let X be the operator $L^2(\mu) \to L^2(\mu)$ of multiplication by x, that is,

(Xf)(x)=xf(x).

Observe that X is a bounded self-adjoint operator with operator norm $||X|| = \sup\{|x| : x \in \operatorname{supp}(\mu)\}.$

Let $\xi \in L^2(\mu)$ be the function which is identically 1. Then for $z \in \mathbb{C} \setminus \mathbb{R}$,

$$\langle \xi, (z-X)^{-1}\xi
angle = \int_{\mathbb{R}} 1 \cdot \frac{1}{z-x} 1 \, d\mu(x) = G_{\mu}(z).$$

Here $(z - X)^{-1}$ is short for $(zI - X)^{-1}$ in B(H).

In fact, for any $f \in C_0(\mathbb{R})$, we have

$$\langle \xi, f(X)\xi \rangle = \int_{\mathbb{R}} f(x) d\mu(x),$$

where f(X) means the application of the function f to the operator X through functional calculus. This last equation means precisely that μ is the *spectral measure* associated to the operator X and the vector ξ .

Recall that in general, for any self-adjoint operator X and vector ξ in a Hilbert space \mathcal{H} , such a spectral measure is guaranteed to exist by the spectral theorem, and the total mass of the measure is $\|\mu\| = \|\xi\|^2$.

Let's write $\mathcal{H} = L^2(\mu)$. Let $P : \mathcal{H} \to \mathcal{H}$ be the projection onto $\mathbb{C}\xi$, that is, $Pf = \xi \langle \xi, f \rangle$, or in bracket notation $P = |\xi\rangle \langle \xi|$. Let Q = 1 - P.

In the proposition, we will use $b = \langle \xi, X\xi \rangle$ and σ will be the spectral measure of QXQ with respect to the vector $QX\xi$, which means in particular that

$$G_{\sigma}(z) = \langle QX\xi, (z - QXQ)^{-1}QX\xi \rangle.$$

So the relation $F_{\mu}(z) = z - b - G_{\sigma}(z)$ that we want to prove can be rephrased as

$$rac{1}{\langle \xi, (z-X)^{-1} \xi
angle} = z - \langle \xi, X \xi
angle - \langle Q X \xi, (z-Q X Q)^{-1} Q X \xi
angle$$

Proof of Proposition 1

There is an efficient but perhaps unenlightening proof for this relation using resolvent identities. Instead, I'll show an argument with combinatorial insight.

Denote

$$egin{aligned} \mathcal{K}(z) &= \langle \xi, X\xi
angle - \langle QX\xi, (z-QXQ)^{-1}QX\xi
angle \ &= \langle \xi, X\xi
angle - \langle \xi, XQ(z-QXQ)^{-1}QX\xi
angle. \end{aligned}$$

We need to show that $(z - K(z))^{-1} = \langle \xi, (z - X)^{-1} \xi \rangle = G_{\mu}(z).$

For z in a neighborhood of ∞ , we have

$$(z - K(z))^{-1} = \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{K(z)}{z}\right)^n$$

Proof of Proposition 1

Let's find an elegant way to express K(z)/z. Note that

$$XQ(z - QXQ)^{-1}QX = XQ\left(\frac{1}{z}\sum_{m=0}^{\infty}\frac{1}{z^m}(QXQ)^m\right)QX$$
$$= \sum_{k=1}^{\infty}\frac{1}{z^k}X(QX)^k.$$

Hence,

$$X + XQ(z - QXQ)^{-1}QX = \sum_{k=0}^{\infty} \frac{1}{z^k} X(QX)^k.$$

Now take the inner product with ξ and divide by z again:

$$\frac{K(z)}{z} = \sum_{k=0}^{\infty} \frac{1}{z^{k+1}} \langle \xi, X(QX)^k \xi \rangle = \sum_{k=0}^{\infty} \langle \xi, z^{-1} X(Qz^{-1}X)^k \xi \rangle.$$

In short, K(z)/z is given by taking the inner product with ξ on both sides to all the "strings" produced by alternating the "letters" $z^{-1}X$ and Q, with $z^{-1}X$ occurring at both the start and the end.

Then we plug this into the power series expansion of $(z - K(z))^{-1}$:

$$(z - K(z))^{-1} = \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{K(z)}{z} \right)^n = z^{-1} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \langle \xi, z^{-1} X (Q z^{-1} X)^k \xi \rangle \right)^n$$

By distributing multiplication over addition, we get

$$z^{-1}\sum_{n\geq 0}\sum_{k_1,\ldots,k_n\geq 0}\langle \xi,z^{-1}X(Qz^{-1}X)^{k_1}\xi\rangle\ldots\langle \xi,z^{-1}X(Qz^{-1}X)^{k_n}\xi\rangle$$

Because $P = |\xi\rangle\langle\xi|$, we can replace each occurrence of " $\xi\rangle\langle\xi$," by P, so it is

$$z^{-1} \sum_{n\geq 0} \sum_{k_1,\ldots,k_n\geq 0} \langle \xi, z^{-1}X(Qz^{-1}X)^{k_1}P\ldots Pz^{-1}X(Qz^{-1}X)^{k_n}\xi \rangle.$$

The recipe to generate these terms is as follows: pick $n \ge 0$; then choose n different strings of $z^{-1}X$'s and Q's where the number of Q's is k_1, \ldots, k_n ; then concatenate these n strings together with a P in between consecutive terms.

In this way, we will produce all possible strings like $z^{-1}X$, then P or Q, then $z^{-1}X$, then P or Q, ..., ending with $z^{-1}X$.

If we fix $\ell \ge 0$ and consider all such strings that have ℓ occurrences of $z^{-1}X$, with all possible choices of P or Q in each position, then like in the binomial theorem, we would get

$$z^{-1}X(P+Q)z^{-1}X...(P+Q)z^{-1}X$$

with ℓ occurrences of $z^{-1}X$. But P + Q = 1, so this is just $(z^{-1}X)^{\ell}$. So therefore,

$$(z-\mathcal{K}(z))^{-1}=z^{-1}\sum_{\ell\geq 0}\langle \xi,(z^{-1}X)^\ell\xi\rangle,$$

which by the geometric series expansion again gives us

$$(z-\mathcal{K}(z))^{-1}=\langle \xi,(z-X)^{-1}\xi
angle=\mathcal{G}_{\mu}(z),$$

which completes the direction $\mu \rightsquigarrow (b, \sigma)$ of the Proposition.

In the other direction, we start by building a Hilbert space \mathcal{K} , a self-adjoint operator Y, and a vector ζ with

$$G_{\sigma}(z) = \langle \zeta, (z-Y)^{-1}\zeta \rangle$$

Then consider the Hilbert space $\mathcal{H} = \mathbb{C}\xi \oplus \mathcal{K}$, where ξ is assumed to be a unit vector, and the operator $X : \mathcal{H} \to \mathcal{H}$ given in bracket notation by

$$X = b|\xi\rangle\langle\xi| + |\xi\rangle\langle\zeta| + |\zeta\rangle\langle\xi| + Y$$

Let μ be the spectral measure associated to X and ξ . Then retracing our previous argument, we have $P = |\xi\rangle\langle\xi|$ and $Q = 1 - P = \operatorname{Proj}_{\mathcal{K}}$. Also, $\langle\xi, X\xi\rangle = b$ and $X\xi = \zeta$, and QXQ = Y, so we will get back the original b and σ .

We have just showed that there is a bijection between compactly supported probability measures μ and pairs (b, σ) of a real number and a finite compactly supported Borel measure given by $F_{\mu}(z) = z - b - G_{\sigma}(z)$ (bijection since a measure is uniquely determined by the Cauchy transform).

This bijection can be realized using operator models: To get (b, σ) from μ , we cut the operator into four pieces PXP = bP, PXQ, QXP, and QXQ. For the other direction, we assembled the operator X out of the four pieces $b|\xi\rangle\langle\xi|$, $|\xi\rangle\langle\xi|$, $|\zeta\rangle\langle\xi|$, Y.

The mean of μ is *b*, the variance of μ is $\|\sigma\|$, and the moments of σ are known in non-commutative probability theory as *boolean cumulants* of μ .

Cauchy transform representation of functions

2 Operator models for Cauchy transforms

Operator model for composition

Operator models for Loewner chains

Operator model for composition

We just described an operator model for the bijection $\mu \leftrightarrow (b, \sigma)$. Now we will describe how to build operators that realize the composition of two *F*-transforms F_{μ_1} and F_{μ_2} .

Proposition 2

Let μ_1 and μ_2 be compactly supported probability measures on \mathbb{R} . Suppose μ_j is realized by a self-adjoint X_j and vector ξ_j on the Hilbert space \mathcal{H}_j . Let $P_j = |\xi_j\rangle\langle\xi_j|$.

Let $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ and $\xi = \xi_1 \otimes \xi_2$. Define

$$\widehat{X}_1 := X_1 \otimes P_2$$
 $\widehat{X}_2 := 1 \otimes X_2.$

Let μ be the distribution of $X := \widehat{X}_1 + \widehat{X}_2$ with respect to ξ . Then

$$F_{\mu}=F_{\mu_1}\circ F_{\mu_2}.$$

< /□ > < ∃

Monotone independence

Note that the distribution of \hat{X}_j with respect to ξ is the same as the distribution of X_j with respect to ξ_j .

Moreover, the operators \hat{X}_1 and \hat{X}_2 are monotone independent random variables in the sense of Muraki [2].

The proper definition will be explained next time, but for our purposes today, monotone independence amounts to the following relations: First,

$$\widehat{X}_1 f(\widehat{X}_2) \widehat{X}_1 = \widehat{X}_1 \langle \xi, f(\widehat{X}_2) \xi \rangle \widehat{X}_1,$$

meaning that if a function of \hat{X}_2 is sandwiched between two copies of \hat{X}_1 , then we can replace $f(\hat{X}_2)$ by its "expectation"

$$\langle \xi, f(\widehat{X}_2)\xi \rangle = \int_{\mathbb{R}} f(x) d\mu_2(x).$$

The reason for this relation is that

$$egin{aligned} &(X_1\otimes P_2)(1\otimes f(X_2))(X_1\otimes P_2) &= (X_1^2\otimes P_2f(X_2)P_2) \ &= (X_1\otimes P_2)^2\cdot\langle\xi_2,f(X_2)\xi_2
angle \ &= \widehat{X}_1^2\langle\xi,f(\widehat{X}_2)\xi
angle. \end{aligned}$$

The other relation for monotone independence is that

$$\widehat{X}_1f(\widehat{X}_2)\xi = \widehat{X}_1\langle\xi, f(\widehat{X}_2)\xi\rangle\xi,$$

which is proved similarly.

We need to show that $F_{\mu} = F_{\mu_1} \circ F_{\mu_2}$. But it will be easier to work with moment generating functions rather than *F*-transforms. Let

$$ilde{G}_{\mu}(z)=G_{\mu}(1/z)=\sum_{k=0}^{\infty}z^{k+1}\langle\xi,X^k\xi
angle.$$

Note that $\tilde{G}_{\mu} = \text{inv} \circ F_{\mu}, \circ \text{inv}^{-1}$, where inv denote the map $z \mapsto z^{-1}$. Thus, the equation $F_{\mu} = F_{\mu_1} \circ F_{\mu_2}$ that we want to prove is equivalent to

$$ilde{G}_{\mu} = ilde{G}_{\mu_1} \circ ilde{G}_{\mu_2}.$$

Proof of Proposition 2

Let us write

$$ilde{G}_{\mu}(z)=\langle\xi,(1/z-X)^{-1}\xi
angle=\langle\xi,(1-zX)^{-1}z\xi
angle.$$

Note

$$1 - zX = 1 - z\widehat{X}_2 - z\widehat{X}_1 = (1 - z\widehat{X}_2)[1 - (1 - z\widehat{X}_2)^{-1}z\widehat{X}_1],$$

SO

$$(1 - zX)^{-1}z = [1 - (1 - z\hat{X}_2)^{-1}z\hat{X}_1]^{-1}(1 - z\hat{X}_2)^{-1}z$$
$$= \sum_{n=0}^{\infty} [(1 - z\hat{X}_2)^{-1}z\hat{X}_1]^n(1 - z\hat{X}_2)^{-1}z$$

э

Thus, we get

$$\langle \xi, (1-zX)^{-1}z\xi \rangle = \sum_{n=0}^{\infty} \langle \xi, [(1-z\widehat{X}_2)^{-1}z\widehat{X}_1]^n (1-z\widehat{X}_2)^{-1}z\xi \rangle.$$

Now $(1 - z\hat{X}_2)^{-1}z$ is a function of \hat{X}_2 , and it is sandwiched between copies of \hat{X}_1 and ξ . Thus, by monotone independence, we can replace each occurrence of $(1 - z\hat{X}_2)^{-1}z$ by its expectation, which is

$$\left\langle \xi, (1-z\widehat{X}_2)^{-1}z\xi \right\rangle = \left\langle \xi_2, (1-zX_2)^{-1}z\xi_2 \right\rangle = \widetilde{G}_{\mu_2}(z).$$

Proof of Proposition 2

Therefore,

$$egin{aligned} &ig\langle \xi, (1-zX)^{-1}z\xiig
angle &= \sum_{n=0}^\infty \Bigl\langle \xi, [ilde{G}_{\mu_2}(z)\widehat{X}_1]^n ilde{G}_{\mu_2}(z)\xi \Bigr
angle \ &= \Bigl\langle \xi, (1/ ilde{G}_{\mu_2}(z)-\widehat{X}_1)^{-1}\xi \Bigr
angle \ &= ilde{G}_{\mu_1}(ilde{G}_{\mu_2}(z)), \end{aligned}$$

which is what we wanted to show.

Remark

If $F_{\mu} = F_{\mu_1} \circ F_{\mu_2}$, then μ is said to be the *monotone convolution* of μ_1 and μ_2 , denoted $\mu = \mu_1 \triangleright \mu_2$.

Cauchy transform representation of functions

2 Operator models for Cauchy transforms

3 Operator model for composition

Operator models for Loewner chains

Definition

A Loewner chain is a family of functions $(F_t)_{t\geq 0}$ from $\mathbb{H}_+ \to \mathbb{H}_+$ such that

• $F_t(z) - z$ is analytic in a neighborhood of ∞ with

$$F_t(z) = z - rac{t}{z} + O\left(rac{1}{z^2}
ight)$$

② For each $s \leq t$, there is another function $F_{s,t} : \mathbb{H}_+ \to \mathbb{H}_+$ with

$$F_s \circ F_{s,t} = F_t.$$

Some basic observations:

- $F_{s,t}$ is uniquely determined by F_s and F_t .
- **2** Using Nevanlinna's theorem, F_t and $F_{s,t}$ can be written as the *F*-transforms of measures μ_t and $\mu_{s,t}$.
- These measures all have mean zero. The variance of μ_t is t and the variance of μ_{s,t} is t s.
- In particular, $\mu_0 = \delta_0$ and $F_0 = id$. Similarly, $F_{t,t} = id$.

Theorem (Bauer [3])

If $(F_t)_{t\geq 0}$ is a Loewner chain, then $\partial_t F_t$ exists for all z for a.e. t, and there is a unique family of probability measures $(\sigma_t)_{t\geq 0}$ (which depend measurably on t and have uniformly bounded support for $t \leq T$) such that

$$\partial_t F_t(z) = -F'_t(z)G_{\sigma_t}(z).$$

Conversely, given such a family of measures $(\sigma_t)_{t\geq 0}$, there is a unique Loewner chain $(F_t)_{t\geq 0}$ satisfying the equation.

The measures $(\sigma_t)_{t\geq 0}$ are called the *driving measures* for the Loewner chain. The theorem thus describes a bijection between the driving measures $(\sigma_t)_{t\geq 0}$ and the measures $(\mu_t)_{t\geq 0}$ with $F_t = F_{\mu_t}$, in a similar spirit to the correspondence between σ and μ in Proposition 1 (restricting to the case where b = 0).

35 / 45

Remarks on the proof

Actually, Proposition 1 plays a role in obtaining the measures $(\sigma_t)_{t\geq 0}$ from F_t . By this proposition,

$$F_{s,t}(z)=z-G_{\tau_{s,t}}(z),$$

for some measure $\tau_{s,t}$ with total mass t - s. The measures σ_t are obtained as

$$\sigma_t = \lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \tau_{t,t+\epsilon} \text{ for a.e. } t.$$

The differential equation derives from

$$egin{aligned} F_{t+\epsilon}(z) - F_t(z) &= F_t(F_{t,t+\epsilon}(z)) - F_t(z) \ &pprox F_t(z-\epsilon G_{\sigma_t}(z)) - F_t(z) \ &pprox F_t'(z)\epsilon G_{\sigma_t}(z). \end{aligned}$$

How do we obtain the Loewner chain $(F_t)_{t\geq 0}$ from the measures $(\sigma_t)_{t\geq 0}$? Bauer did this by solving the equation through Picard iteration.

But Bauer also knew that $F_t = F_{\mu_t}$ can be represented in terms of the spectral measures of operators, so that Loewner chains should be connected to non-commutative probability theory [4]. Later, Schleißinger made the connection between Loewner chains and monotone independence explicit [5].

I looked for a natural way to build operators X_t out of the measures which produce the Loewner chain, that would also clearly show the relationship with monotone independence.

First, let's package all the measures σ_t into a single measure σ on $\mathbb{R} \times [0, +\infty)$ given by the disintegration

$$d\sigma(x,t)=d\sigma_t(x)\,dt,$$

that is, for $f \ge 0$,

$$\int_{\mathbb{R}\times[0,+\infty)} f(x,t) \, d\sigma(x,t) = \int_{[0,+\infty)} \int_{\mathbb{R}} f(x,t) \, d\sigma_t(x) \, dt.$$

Now let $\sigma^{\otimes n}$ be the product of *n* copies of σ on $(\mathbb{R} \times [0, +\infty))^{\times n}$. Then let σ_n be the restriction of $\sigma^{\otimes n}$ to

$$E_n = \{(x_1,\ldots,x_n,t_1,\ldots,t_n): t_1 \ge t_2 \ge \cdots \ge t_n \ge 0\}.$$

We set $\mathcal{H}_n = L^2(\sigma_n)$, and

$$\mathcal{H}=\mathbb{C}\xi\oplus\bigoplus_{n\geq 1}\mathcal{H}_n.$$

For simplicity, denote $\mathcal{H}_0 = \mathbb{C}\xi$. This \mathcal{H} is a type of *Fock space*.

Operator models for Loewner chains

Like in Proposition 1, the operators X_t are built out of four pieces (well, actually only three since the mean of μ_t is zero).

First, for any function in $\zeta \in L^2(\sigma)$, there is a *creation operator* $\ell(\zeta) : \mathcal{H} \to \mathcal{H}$ which maps each \mathcal{H}_n into \mathcal{H}_{n+1} by

$$\ell(\zeta)f = (\zeta \otimes f)|_{E_{n+1}}.$$

Here $f \in L^2(\sigma^{\otimes n})$ supported in E_n and $\zeta \otimes f \in L^2(\sigma^{\otimes (n+1)})$, so we can restrict it to E_{n+1} to get a function in $L^2(\sigma_{n+1})$.

Similarly, for $\phi \in L^{\infty}(\sigma)$, we can define a *multiplication operator* $\mathfrak{m}(\phi)$ which multiplies a function f in \mathcal{H}_n by $\phi \otimes 1^{\otimes (n-1)}$, so that

$$[\mathfrak{m}(\phi)f](x_1,\ldots,x_n,t_1,\ldots,t_n)=\phi(x_1,t_1)f(x_1,\ldots,x_n,t_1,\ldots,t_n).$$

The operator $\mathfrak{m}(\phi)$ is defined to act by zero on the subspace \mathcal{H}_0 .

Theorem (J. 2017) [1]

For $t \ge 0$, define

$$X_t = \ell(1 \otimes \chi_{[0,t]}) + \ell(1 \otimes \chi_{[0,t]})^* + \mathfrak{m}(\mathsf{id}_{\mathbb{R}} \otimes \chi_{[0,t]}),$$

where $1 \otimes \chi_{[0,t]}$ is the function $(x, s) \mapsto \chi_{[0,t]}(s)$ in $L^2(\sigma)$ and $id_{\mathbb{R}} \otimes \chi_{[0,t]}$ is the function $(x, s) \mapsto x\chi_{[0,t]}(s)$ in $L^2(\sigma)$.

Then the spectral measure μ_t associated to X_t and the vector ξ satisfies the Loewner equation

$$\partial_t F_{\mu_t} = -F'_{\mu_t} \cdot G_{\sigma_t}.$$

The first step is to show that F_{μ_t} forms a Loewner chain. To accomplish this, we use the operator

$$X_{s,t} = \ell(1 \otimes \chi_{[s,t]}) + \ell(1 \otimes \chi_{[s,t]})^* + \mathfrak{m}(\mathsf{id}_{\mathbb{R}} \otimes \chi_{[s,t]}).$$

One can show that X_s and $X_{s,t}$ are monotone independent — and in fact, this can be done by decomposing \mathcal{H} into a tensor product as in Proposition 2, and expressing $X_s = Y \otimes P$ and $X_{s,t} = 1 \otimes Z$ for certain operators Y and Z.

Thus, letting $\mu_{s,t}$ be the measure associated to $X_{s,t}$, we get $\mu_t = \mu_s \triangleright \mu_{s,t}$, or $F_{\mu_t} = F_{\mu_s} \circ F_{\mu_{s,t}}$.

Then we have to check that it satisfies the Loewner equation for the given driving measures $(\sigma_t)_{t\geq 0}$. Recall that $\tau_{s,t}$ is the measure given by

$$F_{s,t}(z)=z-G_{\tau_{s,t}}(z).$$

We need to show that $\sigma_t = \lim_{\epsilon \to 0^+} (1/\epsilon) \tau_{t,t+\epsilon}$.

Let $P = |\xi\rangle\langle\xi|$ and Q = 1 - P. By Proposition 1, $\tau_{t,t+\epsilon}$ is the spectral measure of $QX_{t,t+\epsilon}Q$ with respect to the vector $QX_{t,t+\epsilon}\xi$.

This vector is exactly $1 \otimes \chi_{[t,t+\epsilon]}$ in $L^2(\sigma) = \mathcal{H}_1 \subseteq \mathcal{H}$. The norm squared of this vector is ϵ .

One can check that the operator norm $\|\ell(\zeta)\| = \|\zeta\|$. This implies that $\|\ell(1 \otimes \chi_{[t,t+\epsilon]})\| = \epsilon^{1/2}$. Hence,

$$QX_{t,t+\epsilon}Q = Q\mathfrak{m}(\operatorname{id}_{\mathbb{R}}\otimes\chi_{[t,t+\epsilon)})Q + O(\epsilon^{1/2}).$$

We want the distribution of this operator with respect to a vector of norm squared ϵ . So up to an error of $O(\epsilon^{3/2})$, it is the same as the distribution of $Q\mathfrak{m}(\mathrm{id}_{\mathbb{R}}\otimes\chi_{[t,t+\epsilon)})Q$ for the vector $1\otimes\chi_{[t,t+\epsilon]}$. That turns out to be $\int_{t}^{t+\epsilon} \sigma_{s} ds$, which will be asymptotically like $\epsilon \sigma_{t}$ as $\epsilon \to 0$ for almost every t.

References

- D. Jekel, Operator-valued chordal Loewner chains and non-commutative probability, Journal of Functional Analysis, 278.10 (2020), 108452".
- N. Muraki, Monotonic independence, monotonic central limit theorem, and monotonic law of small numbers, Infinite Dimensional Analysis, Quantum Probability, and Related Topics 04.
- R. O. Bauer, Chordal Loewner families and univalent Cauchy transforms, Journal of Mathematical Analysis and Applications 302 (2) (2005) 484 - 501.
- R. O. Bauer, Löwner's equation from a noncommutative probability perspective, Journal of Theoretical Probability 17 (2) (2004) 435–457.
- S. Schleißinger, The chordal Loewner equation and monotone probability theory, Infinite-dimensional Analysis, Quantum Probability, and Related Topics 20 (3).

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A