
Free Entropy for Free Gibbs Laws Given by Convex
Potentials

David A. Jekel

University of California, Los Angeles

University of Virginia Apr. 23, 2019

David A. Jekel (UCLA) Free Entropy Apr. 23, 2019 1 / 39



Motivation

We will discuss Voiculescu’s free entropy of a non-commutative law µ of
an m-tuple of self-adjoint random variables. This is an analogue in free
probability theory of the continuous entropy of a probability measure
(
∫
−ρ log ρ).

Voiculescu defined two types of free entropy, χ(µ) (microstates) and χ∗(µ)
(non-microstates). They both measure the “regularity” of the law µ.

They are based on two different viewpoints for classical entropy: χ is based
on the microstates interpretation of entropy and is defined by “counting”
matrix approximations to µ, while χ∗ is defined in terms of free Fisher
information Φ∗, which describes how µ interacts with derivatives.
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Motivation — von Neumann Algebras

Suppose that X = (X1, . . . ,Xm) is a tuple of non-commutative self-adjoint
random variables with law µ and M = W ∗(X1, . . . ,Xm).

Based on χ or χ∗, one defines various notions of free entropy
dimension. This is something like the dimension of the support of a
measure. (For instance, if χ is finite, then microstates free entropy
dimension would be m, and the same for non-microstates versions.)

If δ0(X ) > 1, then M has no Cartan subalgebras and no
asymptotically central sequences [Voiculescu 1996]. In fact, if
δ0(X ) > 0, then M is prime [Ge 1998].

If Φ∗ is finite, then M has no asymptotically central sequences
[Dabrowski 2010].

δ∗ = m, then every non-constant self-adjoint polynomial in
X1, . . . ,Xm has diffuse spectral measure [Charlesworth-Shlyakhtenko
2016, Mai-Speicher-Weber 2017].

(List adapted from Charlesworth-Nelson 2019 “Free Stein Discrepancy.”)
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Motivation — von Neumann Algebras

We hope that free entropy-related results will provide some sufficient
or necessary conditions for M to be isomorphic to L(Fm), contain
L(Fm), or be contained in L(Fm).

Having χ, χ∗, or Φ∗ finite does not imply that that M is a free group
factor. Counterexamples are provided by X + t1/2S where
X = (X1, . . . ,Xm) generates a property (T) von Neumann algebra, S
is a freely independent semicircular tuple, and t is sufficiently small.

Hayes has used a related notion of one-bounded free entropy to study
one-bounded von Neumann algebras and maximal amenable
subalgebras of free group factors.
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Motivation — Random Matrix Theory

We expect microstates free entropy to the be large N limit of
normalized classical entropies of random matrix models that have
good concentration, and free Fisher information to be the large N
limit of normalized classical Fisher information.

Microstates free entropy defines the rate function for a large deviation
principle describing the Gaussian unitary ensemble (see
Biane-Capitaine-Guionnet 2003).

The results of this paper will be based on studying the asymptotic
properties of random matrix models.
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Motivation — Some Key Ideas

We give more explicit statements of how free probability arises as the
large N limit of classical probability, consistent with Voiculesu’s
original motivation.

Then we study the large N behavior of functions (e.g. solutions to
PDE) related to the random matrix models and their entropy. We
show that these functions are asymptotically approximable by trace
polynomials.

This means roughly that the behave asymptotically like a
non-commutative function (e.g. NC polynomial rather than an
entrywise function in the classical sense), and like the same
non-commutative function for different values of N.
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Motivation — Main Question

Voiculescu: When does χ = χ∗?

Note χ being finite implies embeddability of M into Rω, so χ = χ∗

always with no additional assumptions would solve Connes
embedding. A more modest goal would be to prove χ = χ∗ this under
the assumption that some nice enough matrix models exist.

Biane-Capitaine-Guionet 2003 showed that χ ≤ χ∗ always.

Dabrowski 2017 showed that χ = χ∗ for free Gibbs states given by
nice enough convex potentials.

The result of this paper is similar to Dabrowski’s although our proof
takes a PDE rather than SDE viewpoint.

David A. Jekel (UCLA) Free Entropy Apr. 23, 2019 7 / 39



Motivation — Main Question

Voiculescu: When does χ = χ∗?

Note χ being finite implies embeddability of M into Rω, so χ = χ∗

always with no additional assumptions would solve Connes
embedding. A more modest goal would be to prove χ = χ∗ this under
the assumption that some nice enough matrix models exist.

Biane-Capitaine-Guionet 2003 showed that χ ≤ χ∗ always.

Dabrowski 2017 showed that χ = χ∗ for free Gibbs states given by
nice enough convex potentials.

The result of this paper is similar to Dabrowski’s although our proof
takes a PDE rather than SDE viewpoint.

David A. Jekel (UCLA) Free Entropy Apr. 23, 2019 7 / 39



Motivation — Main Question

Voiculescu: When does χ = χ∗?

Note χ being finite implies embeddability of M into Rω, so χ = χ∗

always with no additional assumptions would solve Connes
embedding. A more modest goal would be to prove χ = χ∗ this under
the assumption that some nice enough matrix models exist.

Biane-Capitaine-Guionet 2003 showed that χ ≤ χ∗ always.

Dabrowski 2017 showed that χ = χ∗ for free Gibbs states given by
nice enough convex potentials.

The result of this paper is similar to Dabrowski’s although our proof
takes a PDE rather than SDE viewpoint.

David A. Jekel (UCLA) Free Entropy Apr. 23, 2019 7 / 39



Motivation — Main Question

Voiculescu: When does χ = χ∗?

Note χ being finite implies embeddability of M into Rω, so χ = χ∗

always with no additional assumptions would solve Connes
embedding. A more modest goal would be to prove χ = χ∗ this under
the assumption that some nice enough matrix models exist.

Biane-Capitaine-Guionet 2003 showed that χ ≤ χ∗ always.

Dabrowski 2017 showed that χ = χ∗ for free Gibbs states given by
nice enough convex potentials.

The result of this paper is similar to Dabrowski’s although our proof
takes a PDE rather than SDE viewpoint.

David A. Jekel (UCLA) Free Entropy Apr. 23, 2019 7 / 39



Motivation — Main Question

Voiculescu: When does χ = χ∗?

Note χ being finite implies embeddability of M into Rω, so χ = χ∗

always with no additional assumptions would solve Connes
embedding. A more modest goal would be to prove χ = χ∗ this under
the assumption that some nice enough matrix models exist.

Biane-Capitaine-Guionet 2003 showed that χ ≤ χ∗ always.

Dabrowski 2017 showed that χ = χ∗ for free Gibbs states given by
nice enough convex potentials.

The result of this paper is similar to Dabrowski’s although our proof
takes a PDE rather than SDE viewpoint.

David A. Jekel (UCLA) Free Entropy Apr. 23, 2019 7 / 39



What is non-commutative probability?

classical non-commutative

L∞(Ω,P) W ∗-algebra M
expectation E trace τ

bdd. real rand. var. X self-adjoint X ∈ M
law of X spectral distribution of X w.r.t. τ
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What is free probability?

We replace classical independence by free independence.

Definition by Example

For groups G1 and G2, the algebras L(G1) and L(G2) are freely
independent in (L(G1 ∗ G2), τ).

Free Central Limit Theorem: There’s a free central limit theorem with
normal distribution replaced by semicircular distribution.

Free Convolution: If X and Y are classically independent, then
µX+Y = µX ∗ µY . If X and Y are freely independent, then
µX+Y = µX � µY .
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What is the law of a tuple?

Classically, the law of X = (X1, . . . ,Xm) is a measure on Rm given by

µX (A) = P(X ∈ A).

Assuming finite moments, this can be viewed as a map

µX : C[x1, . . . , xm]→ C, p(x1, . . . , xm) 7→ E [p(X1, . . . ,Xm)].

In the non-commutative case, the law of X = (X1, . . . ,Xm) ∈ Mm
sa is

defined as the map

µX : C〈x1, . . . , xm〉 → C, p(x1, . . . , xm) 7→ τ [p(X1, . . . ,Xm)],

The moment topology on laws is given by pointwise convergence on
C〈x1, . . . , xm〉.
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Notation

τN is the normalized trace on MN(C).

‖·‖2 is the corresponding 2-norm, that is, for x ∈ MN(C)msa, we set
‖x‖22 =

∑m
j=1 τN(x2j ).

‖·‖ is the operator norm of a single matrix and ‖x‖∞ denotes the
maximum of the operator norms of x1, . . . , xm.

σN,t denotes the law of m independent N × N GUE matrices which each
have mean zero and variance t.

σt denotes the non-commutative law of m freely independent semicirculars
which each have mean zero and variance t.
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Asymptotic Approximation by Trace Polynomials
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Trace Polynomials

Trace polynomials in x1, . . . , xm are linear combinations of functions of
the form p0τ(p1) . . . τ(pn) where pj is a non-commutative polynomial in
x1, . . . , xm. For example,

τ(x1x2)x1 + 3τ(x22 )τ(x1x3)x3x2 + 5τ(x23 )

If p is a trace polynomial, then p defines a function MN(C)msa → MN(C).
We interpret τ as the normalized trace on MN(C) and evaluate p at the
point x .

More generally, if (M, τ) is a tracial von Neumann algebra, then p defines
a map Mm

sa → M.
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Asymptotic Approximation by Trace Polynomials

Definition

A sequence of functions φN : MN(C)msa → MN(C)msa is asymptotically
approximable by trace polynomials if for every ε > 0 and R > 0, there
exists an m-tuple of trace polynomials f such that

lim sup
N→∞

sup
x∈MN(C)msa
‖x‖∞≤R

‖φN(x)− f (x)‖2 ≤ ε.

We make a similar definition for scalar-valued functions being
approximated by scalar-valued trace polynomials.
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Properties of AATP

Consider sequences of functions MN(C)msa → MN(C)nsa which are globally
Lipschitz in ‖·‖2.

AATP is preserved under addition and scalar multiplication.

AATP is preserved under limits, that is, if {φN,k}N∈N converges to
{φN}N∈N as k →∞ in a certain sense, then {φN}N∈N would inherit
AATP.

AATP is preserved under convolution with the GUE law σt,N .

AATP is preserved under composition. This is easy to prove, though a
little unexpected because the approximation occurs on an operator
norm ball but the error is measured in ‖·‖2.

AATP is preserved under solving ODE. That is, if we have a vector
field with AATP, then the flow along this vector field also has AATP.
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Microstates Free Entropy χ
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What is classical entropy?

The continuous entropy of a probability measure dµ(x) = ρ(x) dx on Rm

is given by

h(µ) = −
∫
ρ log ρ.

If µ does not have a density, we set h(µ) = −∞.

“Entropy measures regularity.”

1 If µ is highly concentrated, then there is large negative entropy.

2 For mean zero and variance 1, the highest entropy is achieved by
Gaussian.

3 If you smooth µ out by convolution, the entropy increases.
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Microstates Interpretation

Since there’s no nice integral formula for entropy in the free case, the
definition of χ is based on the microstates interpretation.

Classical case: Given a vector in x = (x1, . . . , xm) ∈ (RN)m, let’s define its
empirical distribution as

µx =
1

N

N∑
j=1

δ((x1)j ,...,(xm)j ).

Then {x : µx is close to µ} has measure approximately exp(−Nh(µ)).
Thus, h(µ) can be expressed as

inf
(nbhd’s of µ)

lim
N→∞

1

N
log vol{x : µx close to µ}.

Intuition: If µ is more regular and spread out, then there are more
microstates because most choices of N vectors are “evenly distributed.”
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Microstates Free Entropy

Idea for free case: Replace RN (self-adjoints in L∞({1, . . . ,N})) by
MN(C)sa.

Given (x1, . . . , xm) ∈ MN(C)m, the empirical distribution µx is the
non-commutative law of x w.r.t. normalized trace on MN(C). For a
neighborhood U of µ in the moment topology and R > 0, define

ΓN,R(U) = {x : ‖xj‖ ≤ R and µ ∈ U}.

Define

χ(µ) = sup
R>0

inf
U3µ

lim sup
N→∞

(
1

N2
log vol ΓN,R(U) +

m

2
logN

)
.

(Voiculescu) χ has properties similar to h.
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Free Entropy as the Limit of Classical Entropy

Lemma

Suppose that dµN = e−N
2VN(x) dx, where VN : MN(C)msa → R. Suppose

that |VN(x)| is bounded by a constant times 1 + ‖x‖k , and that for some
R we have

∫
‖x‖∞>R(1 + ‖x‖k∞) dµN(x)→ 0 as N →∞. Suppose that the

law of x with respect to τN converges in probability to the
non-commutative law λ. Then
χ(λ) = lim supN→∞(N−2h(µN) + (m/2) logN).
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Free Entropy as the Limit of Classical Entropy

The idea of the proof is as follows.

First, replace µN by µN truncated to an operator norm ball of radius
R.

For any given neighborhood U of λ, the measure µN will be
concentrated on the microstate space ΓN,R(U).

{VN} can be approximated by a trace polynomial, which will be
approximately constant on ΓN,R(U) if U is sufficiently small.

So the entropy of µN should be approximately the entropy of the
uniform distribution on ΓN,R(U), which is the log volume.

Divide by N2, add (m/2) logN and take the lim sup as N →∞.
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Non-microstates Free Entropy χ∗
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Classical Fisher Information

Classical case: Let µ be a probability measure on Rm with density ρ. Let
γt be the law of a Gaussian random vector with variance tI . Then

d

dt
h(µ ∗ γt) =

∫
|∇ρt |2/ρt = ‖∇ρt/ρt‖2L2(µ∗γt).

The quantity ‖∇ρt/ρt‖2L2(µ∗γt) is called the Fisher information of µ ∗ γt .
The entropy can be recovered by integrating the Fisher information.

Intuition: The Fisher information measures the regularity of µ by looking
at its derivatives.
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Non-Microstates Free Entropy

In the free case, we don’t know an analogue of density, so we want to
rephrase the definition using integration by parts.

Classical Fisher information is L2 norm of the conjugate variable
ξ = (∇ρ/ρ)(X ), which is characterized by an integration-by-parts formula
E [ξf (X )] = E [∇f (X )].

Voiculescu used the free version τ [ξj f (X )] = τ ⊗ τ [DXj
f (X )] to define the

free conjugate variables and hence the free Fisher information.

χ∗(µ) is defined by integrating the free Fisher information of µ� σt ,
where σt is the law of a free semicircular family where each variable has
mean zero and variance t.
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Convergence of Fisher Information

In the case where dµN(x) = (1/ZN)e−N
2VN(x) dx , the classical conjugate

variables would be DVN (up to normalization). So the normalized Fisher
information would be

∫
‖DVN‖22 dµN .

Lemma

Let µN be given by the potential VN . Suppose that ‖DVN(x)‖22 is
bounded by a constant times 1 + ‖x‖k , and that for some R we have∫
‖x‖∞>R(1 + ‖x‖k∞) dµN(x)→ 0 as N →∞. Suppose that the law of x

with respect to τN converges in probability to the non-commutative law λ.
If {DVN} has AATP, then the (normalized) classical Fisher information
converges to the free Fisher information (and the latter is finite).
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Convergence of Fisher Information

Sketch of proof:

Suppose that fk is a sequence of trace polynomials which as k
increases provide better and better asymptotic approximations for
DVN .

Then fk will converge in L2(λ) to some f .

Also, f is a free conjugate variable for λ since the fk ’s approximately
satisfy the integration by parts formula.

Then we check that ‖DVN‖L2(µN) → ‖f ‖L2(λ).
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Main Results and Strategy
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The Upshot

The following conditions would be sufficient for χ(λ) = χ∗(λ):

We have matrix models µN such that the laws of the random matrices
given by µ converge in probability to the non-commutative law λ.

VN and DVN do not grow too fast as ‖x‖ → ∞. We have reasonable
tail bounds on the probability of large operator norm under µN .

VN and DVN are asymptotically approximable by trace polynomials.

The laws µN ∗ σt,N satisfy all the same conditions.

Indeed, in the case, χ(λ) would be the lim sup of the classical entropies.
Since the classical Fisher information of µN ∗ σt,N would converge to the
free Fisher information of λ� σt , then the classical entropy would also
converge to χ∗(λ).
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The Upshot

When can we check these conditions are true?

Operator norm tail bounds for µN would follow from exponential
concentration for ‖·‖2-Lipschitz functions (e.g. coming from the
log-Sobolev inequality), provided that the expectation of µN is a
multiple of the identity matrix [Guionnet and Maurel-Segala].

Given this concentration of measure, the convergence of the NC law
in probability as N →∞ would be equivalent to convergence in
expectation.

The log-Sobolev inequality and exponential concentration are known
to hold provided that VN is uniformly convex (HVN ≥ c for some
c > 0 independent of N). [Bakry-Emery, Herbst, Ledoux, etc.]
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The Upshot

If {DVN} is asymptotically approximable by trace polynomials, then
so is {VN − VN(0)}. You just integrate your approximating
polynomial for DVN along the straight-line path from 0 to x .

Concentration, convergence in expectation, and tail bounds are
preserved under convolution by Gaussian. This is another lemma that
is not too difficult.
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Main Goals

Suppose we’re given potentials {VN}. Assume uniform convexity of VN

and that {DVN} is AATP. Then we want to show two claims:

Claim 1

If DVN is AATP, then
∫
τN(p) dµN converges as N →∞ for any

non-commutative polynomial p.

Hence, there is some non-commutative law λ that arises as the large-N
limit. We could take this as the definition of a free Gibbs state.

In the special case where VN(x) = V (x) = τN(p(x)) for a fixed p that is a
small or convex perturbation of quadratic, the existence and uniqueness of
a NC law with conjugate variables DV (x) was shown in works of Guionnet,
Maurel-Segala, Shlyaktenko, Dabrowski. They also deduce convergence of
certain random matrix models.
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Main Goals

Claim 2

If DVN is AATP, then the same holds for DVN,t , where VN,t is the
potential corresponding to µN ∗ σN,t .

If we can prove this, then χ(λ) = χ∗(λ). Also, it’s equal to the limit of the
normalized classical entropies.
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Main Result

Theorem

Let VN(x)− (c/2)‖x‖22 is convex and VN(x)− (C/2)‖x‖22 is concave for

some 0 < c < C. Let dµN(x) = 1
ZN

e−N
2VN(x) dx. Suppose {DVN} is

AATP. Suppose that the expectation of µN is bounded in operator norm
as N →∞. Then

1 µ(p) := limN→∞
∫
τN(p(x)) dµN(x) exists for every non-commutative

polynomial p.

2 The non-commutative law λ has finite free Fisher information and
finite free entropy.

3 χ(λ) = χ∗(λ) = limN→∞[N−2h(µN) + (m/2) logN].

4 The normalized Fisher information of µN ∗ σN,t converges to the free
Fisher information of µ� σt for every t ≥ 0.

5 The free Fisher information is locally Lipschitz in t.
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Some of the Proof
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Evolution of Potentials

Let’s focus on the proof of Claim 2 (assuming Claim 1), since Claim 2 is
harder and more interesting.

Let µN,t = µN ∗ σN,t and let VN,t be the potential such that the density of

µN,t is (1/ZN)e−N
2VN,t .

We know that the density of µN,t evolves according to the heat equation
(with (1/2N)∆), but this does not immediately help us analyze DVN,t

asymptotically because of the dimension-dependent factor of N2 in the
exponent.
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Evolution of Potentials

Thus, we rewrite the equation in terms of VN,t :

∂tVN,t =
1

2N
∆VN,t −

1

2
‖DVN,t‖22.

This is the normalization of the Laplacian that corresponds to convolution
with GUE. So this is a dimension-independent equation for free
probabilistic normalization.

Using PDE tools and the convexity assumptions, we will “build” an
approximation to VN,t by taking VN and applying nice explicit operations
that preserve AATP (that is, AATP for the gradient of V rather than V
itself).
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Approximation of Solutions

As heuristic, recall that to solve the equation

∂tv =
1

2N
∆v ,

we would use the Gaussian convolution semigroup Ptv = v ∗ σN,t .

To solve the equation

∂tv = −1

2
‖Dv‖22,

we would use the Hopf-Lax inf-convolution semigroup

Qtv(x) = inf
y

[
v(y) +

1

2t
‖x − y‖22

]
.

(This is a well-known fact in PDE.)
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Approximation of Solutions

The solution VN,t can be obtained by combining these operations together:

VN,t = lim
k→∞

(Pt/kQt/k)kVN .

The paper gives an elementary but technical argument for this, which we
will not explain in detail.

But note the following key points.

The error estimates are dimension-independent. This is the whole
point!

The regularizing properties of Pt are not used here because they
disappear as N →∞.

It relies on the fact that Pt and Qt preserve the space of functions
with 0 ≤ Hv ≤ C , and for such functions the gradient is
automatically C -Lipchitz.

The proof goes by showing that the limit exists as k ranges over
powers of 2, and the limit is a viscosity solution.
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Inf-Convolution Preserves AATP

Lemma

Let 0 ≤ HuN ≤ C. If {DuN} is AATP, then so is {D(QtuN)}.

Proof.

The inf-convolution Qtu is differentiable and satisfies

D(Qtu)(x) = Du(x − tD(Qtu)(x))

(This is derived from the fact that the minimizer in the definition of Qtu
has to be a critical point.) Thus, D(Qtu)(x) is a fixed point of
y 7→ Du(x − ty), which is a contraction mapping when t < 1/C . So
D(Qtu)(x) can be obtained as limn→∞ φn(x) where φ0(x) = x and
φn+1(x) = Du(x − tφn(x)), and the rate of convergence is
dimension-independent. Since AATP is preserved by composition and
limits, the claim holds for t < 1/C . But Qt preserves the class of functions
with 0 ≤ Hu ≤ C and Qt is a semigroup, so the claim holds for all t.
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