Similarity and Projections

David Jekel

February 1, 2016

Suppose that

- L_{θ} is the line spanned by $\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$,
- R_{θ} is the rotation by angle θ.
- A_{θ} is the matrix of the orthogonal projection onto L_{θ}.
- B_{θ} is the matrix of reflection across L_{θ}.

Your mission:

1. Show that

$$
A_{\theta}=R_{\theta}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) R_{-\theta}
$$

2. Explain what this statement means in terms of two matrices being similar.
3. Conclude that all the A_{θ} matrices are similar to each other. (See Theorem 3.4.6.)
4. Either geometrically or by direct computation, verify that

$$
\binom{\cos \theta}{\sin \theta}=R_{\theta}\binom{1}{0} \quad\binom{-\sin \theta}{\cos \theta}=R_{\theta}\binom{0}{1}
$$

5. By combining the formulas from parts (1) and (4), verify that

$$
A_{\theta}\binom{\cos \theta}{\sin \theta}=\binom{\cos \theta}{\sin \theta}, \quad A_{\theta}\binom{-\sin \theta}{\cos \theta}=0
$$

(You already knew geometrically that this should happen. The point of the question is to see how it relates to similarity.)
6. Now let's do reflections: Fill in the blank with a matrix:

$$
B_{\theta}=R_{\theta}(? ?) R_{-\theta}
$$

7. Fill in the blanks with scalars:

$$
B_{\theta}\binom{\cos \theta}{\sin \theta}=(? ?)\binom{\cos \theta}{\sin \theta}, \quad B_{\theta}\binom{-\sin \theta}{\cos \theta}=(? ?)\binom{-\sin \theta}{\cos \theta}
$$

8. Draw a coordinate grid starting with the basis vectors

$$
\binom{\cos \theta}{\sin \theta}, \quad\binom{-\sin \theta}{\cos \theta}
$$

What do the projection and reflection matrices do to this coordinate grid?
9. Generalize: Suppose that

$$
M=S\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right) S^{-1}
$$

and that \vec{v}_{1} and \vec{v}_{2} are the columns of S. What are $M \vec{v}_{1}$ and $M \vec{v}_{2}$?

Problems for people with extra time:

1. Show that $R_{\theta} \vec{v} \cdot R_{\theta} \vec{w}=\vec{v} \cdot \vec{w}$ and that $B_{\theta} \vec{v} \cdot B_{\theta} \vec{w}=\vec{v} \cdot \vec{w}$. What does this mean geometrically?
2. Show that $A_{\theta} \vec{v} \cdot \vec{w}=\vec{v} \cdot A_{\theta} \vec{w}$ and that $B_{\theta} \vec{v} \cdot \vec{w}=\vec{v} \cdot B_{\theta} \vec{w}$.
3. Suppose that $A B=A+B$. Let $A^{\prime}=S A S^{-1}$ and $B^{\prime}=S B S^{-1}$. Show that $A^{\prime} B^{\prime}=A^{\prime}+B^{\prime}$. (All these matrices are assumed to be square $n \times n$.)
4. Suppose that A is invertible. Show that $A B$ and $B A$ are similar.
5. The matrix

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

represents reflection across some line. What is it? Hint: It is not L_{θ}.

