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Properties of Dot Products

Recall that the “dot product” or “standard inner product” on Rn is given by

~x · ~y = x1y1 + · · ·+ xnyn.

Another notation that is used for the inner product is 〈~x, ~y〉. The dot product
satisfies these three properties:

• It is “symmetric,” which means that 〈~x, ~y〉 = 〈~y, ~x〉.

• It is “linear in each variable.” This means that if α and β are scalars,

〈α~x+ β~y, ~z〉 = α 〈~x, ~z〉+ β 〈~y, ~z〉 .

and
〈~z, α~x+ β~y〉 = α 〈~z, ~x〉+ β 〈~z, ~x〉 .

• “Positivity”: For any ~x, we have 〈~x, ~x〉 ≥ 0. The only way it can be zero
is if ~x = ~0.

The first two properties can be checked by direct computation. The third one
follows from the fact that

〈~x, ~x〉 = x21 + · · ·+ x2n.

Since each x2j is ≥ 0, we know 〈~x, ~x〉 ≥ 0. Moreover, the only way it can be zero
if all the terms are zero, which implies ~x = 0.

We then define ‖~x‖ =
√
〈~x, ~x〉, and we know that ‖~x‖ = 0 if and only if

~x = ~0.
I draw attention to these three properties because they are the most impor-

tant for what we are doing in linear algebra. Also, in more advanced math,
there is a general idea of inner product (something that satisfies these proper-
ties), which is super-important and math and physics.
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Properties of Transposes

Recall that the transpose of a matrix is defined by (AT )i,j = Aj,i. In other
words, to find AT you switch the row and column indexing. For example, if

A =

(
6 −1 0
1 2 4

)
, then AT =

 6 1
−1 2
0 4

 .

Transposes and Matrix Products: If you can multiply together two
matrices A and B, then (AB)T = ATBT . To prove this, suppose that A is n×k
and B is k × m. We’ll compute each entry of (AB)T using the definition of
matrix multiplication:

((AB)T )i,j = (AB)j,i = Aj,1B1,i +Aj,2B2,i + · · ·+Aj,kBk,i.

On the other hand,

(BTAT )i,j = (BT )i,1(AT )1,j + (BT )i,1(AT )1,j + · · ·+ (BT )i,k(AT )k,j

= B1,iAj,1 +B2,iAj,2 + · · ·+Bk,iAj,k,

which is the same as ((AB)T )i,j .
If this is true when you multiply two matrices together, then it must also be

true when you multiply three or more matrices together (formally, we prove it
by “mathematical induction”). Thus, for instance,

(ABC)T = CTBTAT .

Transposes and Dot Products: Suppose that ~x and ~y are two vectors in
Rn. We can view them as column vectors or n × 1 matrices, and then the dot
product can be written as

(~x)T~y = x1y1 + · · ·+ xnyn = 〈~x, ~y〉 .

Next, suppose that A is an n×m matrix and ~x ∈ Rm and ~y ∈ Rn. Then

〈A~x, ~y〉 = (A~x)T~y = (~x)TAT~y =
〈
~x,AT~y

〉
,

or in different notation (A~x) · ~y = ~x · (AT~y).
Remarks: The property that 〈A~x, ~y〉 =

〈
~x,AT~y

〉
is an essential property of

the transpose. In suped-up versions of linear algebra that are used in physics,
the property that 〈A~x, ~y〉 =

〈
~x,AT~y

〉
is basically taken as the definition of the

transpose.

Exercises:

• If the proof that (AB)T = BTAT seemed confusingly general, then on a
piece of scratch paper, write down two “random” matrices A and B and
compute (AB)T and BTAT .

2



• Prove that if A is an invertible square matrix, then (AT )−1 = (A−1)T .

• Let ~ej be the jth standard basis vector. If A is any matrix, show that
Ai,j = 〈~ei, A~ej〉.

• Suppose that 〈~x,A~y〉 = 〈~x,B~y〉 for all ~x and ~y. Prove that A = B.

• Let A be some matrix. Then AT is the only possible value of B that would
satisfy 〈A~x, ~y〉 = 〈~x,B~y〉 for all values of ~x and ~y.

Finding a Basis for Orthogonal Complements

In the homework and tests, you might encounter problems like this:
Problem: Let V ⊂ R3 be given by

V = Span


1

2
3

 ,

4
5
2


Compute V ⊥ (that is, find a basis for V ⊥).

Method 1: One way to do this is using the cross product: as explained in
lecture the vector 1

2
3

×
4

5
2

 =

−11
10
−3


must be orthogonal to (1, 2, 4)T and (4, 5, 2)T , and hence it is orthogonal to V .
Since dimV = 2, we know that dimV ⊥ must be one (as stated in lecture notes
7). Thus, (−11, 10,−3)T has to be a basis for V ⊥.

However, the cross product method is special to the case where V is a plane
in R3. For instance, you cannot compute the orthogonal complement of a plane
in R4 using the cross product, since there is no cross product in R4. But luckily
there is a more general way.

Method 2: We are going to interpret V ⊥ as the kernel of some matrix. We
know (HW 7 problem 7) that a vector ~w is in V ⊥ if and only if it is perpendicular
to (1, 2, 3)T and (4, 5, 2)T . In other words, it is in V ⊥ if and only if1

2
3

 · ~w =
(
1 2 3

)
~w = 0

and 4
5
2

 · ~w =
(
4 5 2

)
~w = 0.

This is equivalent to saying that(
1 2 3
4 5 2

)
~w =

(
0
0

)
.
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Thus, computing V ⊥ amounts to computing the set of solutions to this system
of equations, or the kernel of this matrix. We already know how to do this using
the RREF. After some computation, the RREF is(

1 0 −11/3
0 1 10/3

)
.

The first two variables have leading ones and the third variable is free. Setting
the free variable to be t, we find that all the solutions have the form 11t/3

−10t/3
t

 = t

 11/3
−10/3

1

 .

Thus, this vector forms a basis for V ⊥. This agrees with our earlier answer from
Method 1 because the vector from Method 2 is a scalar multiple of the vector
from Method 1. Though Method 2 required explanation, there was not much
actual computation–just row reducing one matrix.

Generalization: Method 2 didn’t use the fact that we were in R3, and
so it generalizes to finding bases for orthogonal complements in all dimensions.
Suppose that V ⊂ Rn is spanned by ~v1, . . . , ~vm. Let A be the matrix with
columns ~v1, . . . , ~vm. Then V = imA and V ⊥ = (imA)⊥.

By HW 7 problem 7, we know that ~w is in V ⊥ if and only if ~v·~w = (~vj)
T ~w = 0

for all j. This is equivalent to saying that (~v1)T

...
(~vm)T

 ~w = ~0.

That is, ~w is in the kernel of the matrix with row (~v1)T , . . . , (~vm)T . This matrix
is just AT . Thus, we’ve proved that V ⊥ is the kernel of AT . To summarize, if
~v1, . . . , ~vm are any vectors in Rn, then

(Span(~v1, . . . , ~vm))
⊥

= ker

 (~v1)T

...
(~vm)T

 .

We can compute a basis for the kernel from the RREF of this matrix.

Orthogonal Complements of Kernel and Image

In the last section, we had a subspace V and wrote V = imA for a matrix A,
and we showed that V ⊥ = kerAT . But the matrix A could have been anything.
Thus, we have essentially proved that

(imA)⊥ = kerAT for any A.
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Replacing A by AT , we can conclude that

(imAT )⊥ = kerA for any A.

Another Proof: For good measure, let’s give a slightly different proof that
(imA)⊥ = kerAT . Why give another proof? Well, this proof will relate to
what we did in the first section. It is also more “coordinate-free”: It does
not explicitly refer to the rows and columns of the matrix or require us to
choose a basis. Rather it uses the important property of the transpose that
〈A~x, ~y〉 =

〈
~x,AT~y

〉
.

In order to prove that that (imA)⊥ = kerAT , we want to show that (1)
anything in kerAT is in (imA)⊥ and (2) anything in (imA)⊥ is in kerAT .

1. Suppose that ~y ∈ kerAT , and we will prove ~y is orthogonal to everything in
the image of A. Any element of the image of A can be written as A~x. Then

〈A~x, ~y〉 =
〈
~x,AT~y

〉
=
〈
~x,~0
〉

= 0.

Therefore, ~y ∈ (imA)⊥.

2. Suppose that ~y ∈ (imA)⊥. Note AAT~y is in the image of A, and thus,
~y ⊥ AAT~y. Therefore,

0 =
〈
A(AT~y), ~y

〉
=
〈
AT~y,AT~y

〉
=
∥∥AT~y

∥∥2 .
Thus,

∥∥AT~y
∥∥ = 0 and therefore, AT~y = ~0, so ~y ∈ kerAT .

Example: Let’s work this out in an example and picture it geometrically:

A =

1 0
1 0
0 0

 , AT =

(
1 1 0
0 0 0

)
.

Verify that

kerA = Span

{(
0
1

)}
, imA = Span


1

1
0


imAT = Span

{(
1
0

)}
, kerAT = Span


 1
−1
0

 ,

0
0
1

 .

Draw a picture of kerA and imAT in R2 and kerAT and imA in R3. Verify
that (imA)⊥ = kerAT and (imAT )⊥ = kerA.

If you want, see what happens with some other matrices: Draw pictures of
the kernel and image of A and AT .
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Formula for Orthogonal Projection

The material in this section is NOT something you need to know for the tests.
But it has a lot of good insights and I hope it will be useful for your future
study of math and its applications.

Assume that V is a subspace of Rn. We want to prove the following:

• Any ~x ∈ Rn can be uniquely written as ~x = ~v + ~w, where ~v ∈ V and
~w ∈ V ⊥.

• There is an “orthogonal projection” matrix P such that P~x = ~v (if ~x, ~v,
and ~w are as above).

• In fact, we can find a nice formula for P .

Setup: Our strategy will be to create P first and then use it to verify all
the above statements. We know that any subspace of Rn has a basis. So let
~v1, . . . , ~vm be a basis for V . Let A be the matrix with columns ~v1, . . . , ~vm:

A =
(
~v1 . . . ~vm

)
.

I claim that the P that we want is

P = A(ATA)−1AT .

Example: To convince you that this formula is believable, let’s see what it
tells us in the simple case where V is one-dimensional. Suppose ~v is the line
spanned by ~v. In that case, there is only one vector in the basis (m = 1), and
A is just the column vector ~v viewed as an n× 1 matrix. Then we have

ATA = ~vT~v = ‖~v‖2 ,

which is a 1× 1 matrix or scalar. Then

P =
~v~vT

‖~v‖2
,

and

P~x =
1

‖~v‖2
~v(~vT~x) =

~v · ~x
‖~v‖2

~v.

This agrees with the formula for orthogonal projection onto a line given in class,
so the above formula for P is correct in the one-dimensional case.

Organization of Proof: The general formula P = A(ATA)−1AT is rather
sneaky and not obvious. I am going to keep you in suspense for a while about
why it works in general, so this proof will require patience. The proof might
seem rather long, but that is because I included fuller explanations of each step
than are usually in the lecture notes.

The proof will be organized into short claims so that we don’t try to do too
many things as once. The first order of business is to prove that ATA is actually
invertible; otherwise, the formula for P doesn’t even make sense.
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Claim. ATA is invertible.

Proof. First, note that ATA is square m × m because A is n × m and AT is
m × n. We have a theorem given in lecture about equivalent conditions for
invertibility of square matrices; we know that ATA must be invertible if we can
prove that ker(ATA) = {0}.

Suppose that ~x ∈ ker(ATA) and we will prove ~x = ~0. The first step is to
show A~x = ~0. Because ATA~x = ~0, we know that

~xTATA~x = 0.

But by the properties of transposes given earlier,

~xTATA~x = (A~x)T (A~x) = (A~x) · (A~x) = ‖A~x‖2 .

Therefore, ‖A~x‖ = 0, and hence A~x = ~0.
If the entries of ~x are x1, . . . , xm, then

~0 = A~x =
(
~v1 . . . ~vm

)x1
...
xm

 = x1~v1 + . . . xm~vm.

By assumption ~v1, . . . , ~vm are linearly independent. Thus, the only way this
linear combination can be zero is if all the xj ’s are zero. Therefore, ~x = ~0. This

completes the proof that ker(ATA) = {~0} and hence ATA is invertible.

Claim. Now comes the sneaky part . . .P has the following properties:

a. PA = A.

b. ATP = AT .

c. P 2 = P .

Proof. Note PA = A(ATA)−1ATA. The (ATA)−1 and ATA cancel, and so
PA = A, which proves (a). The reason for (b) is similar:

ATP = ATA(ATA)−1AT = AT .

Finally, to prove (c),

P 2 = PP = A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P.

Claim. imP = imA = V .

Proof. To show imP = imA, we need to do two things:

• Suppose that ~x ∈ imA and prove ~x ∈ imP .

• Suppose that ~x ∈ imP and prove ~x ∈ imP .
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For the first step, assume ~x ∈ imA. This means that ~x = A~y for some ~y. Then
because PA = A,

P~x = PA~y = A~y = ~x.

Thus, ~x = P~x. So ~x is P of something which means it is in the image of A.
For the second step, suppose ~x ∈ imP . Then ~x = P~y for some ~y, which

implies
~x = A[(ATA)−1AT~y];

thus ~x is A times something and hence is in the image of A.
This proves imP = imA, and the statement imA = V was proved in the

Setup.

Claim. kerP = kerAT = V ⊥.

Proof. The outline is similar to the previous proof. First, suppose ~x ∈ kerAT ,
and we will prove ~x ∈ kerP . By assumption AT~x = ~0 and therefore

P~x = A(ATA)−1AT~x = A(ATA)−1~0 = ~0,

which means ~x ∈ kerP .
Next, suppose ~x ∈ kerP and we will prove ~x ∈ kerAT . Since ~x ∈ kerP ,

P~x = ~0. But we showed earlier that ATP = AT , and hence

AT~x = ATP~x = AT~0 = ~0,

so ~x ∈ kerP .
Therefore, kerAT = kerP . But we proved in the previous section that

kerAT = (imA)⊥ = V ⊥.

Claim. If ~x ∈ V , then P~x = ~x, and if ~x ∈ V ⊥, then P~x = 0.

Proof. We have basically already proved this. If ~x ∈ V = imP , then ~x = P~y
for some ~y, and so P~x = PP~y = P 2~y = P~y = ~x. On the other hand, if
~x ∈ V ⊥ = kerP , then P~x = ~0.

Claim. Any ~x ∈ Rn can be written uniquely as ~v+ ~w, where ~v ∈ V and ~w ∈ V ⊥.
Proof. Let ~v = P~x and ~w = ~x− P~x = (I − P )~x. Then ~v is P of something, so
it is in the image of P , which is V . To show that ~w ∈ V ⊥, we use the fact that
P 2 = P , so

P ~w = P (I − P )~w = (P − P 2)~w = 0;

this implies ~w ∈ kerP = V ⊥.
This shows that ~x can be written as ~v+ ~w with ~v ∈ V and ~w ∈ V ⊥. But we

still have to prove that the decomposition is unique; that is, this is the only way
to write ~x as the sum of something in V and something in V ⊥. Well, suppose
that we have another decomposition ~x = ~v′ + ~w′ where ~v′ ∈ V and ~w′ ∈ V ⊥;
our goal is to prove that ~v = ~v′ and ~w = ~w′. Using the previous claim,

P~x = P~v′ + P ~w′ = ~v′ +~0.

Therefore, ~v′ = P~x = ~v and ~w′ = ~x − ~v′ = ~x − ~v = ~w, so the decomposition is
indeed unique.
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Recap: We have now verified that any ~x can be written uniquely as the
sum of some ~v ∈ V and some ~w ∈ V ⊥, and that P~x = ~v. We have proven the
orthogonal projection exists and found a formula for it. The crucial ingredi-
ents were the fact that kerAT = (imA)⊥ and that PA = A, ATP = AT , and
P 2 = P .

Example: Let’s see how this formula for P works in practice. Suppose that
V ⊂ R3 is given by

V = Span


1

0
2

 ,

 0
1
−3

 .

Then

ATA =

(
1 0 2
0 1 −3

)1 0
0 1
2 −3

 =

(
5 −6
−6 10

)
.

Then using the formula for the inverse of a 2× 2 matrix, we have

P = A(ATA)−1AT =

1 0
0 1
2 −3

 1

14

(
10 6
6 5

)(
1 0 2
0 1 −3

)

=
1

14

10 6
6 5
2 −3

(1 0 2
0 1 −3

)

=
1

14

10 6 2
6 5 −3
2 −3 13


Verify the above computation and check that P 2 = P .

Remarks: In this case, the computation was rather clean because our basis
had so many zeros and ones in it. But often in practice you get such nice bases:
For instance, if you compute the kernel of some matrix using the RREF, you
get a basis with a lot of ones and zeros from parametrizing each of the free
variables.

Challenge: In this example P is symmetric (that is, PT = P ). Prove that
the matrix of any orthogonal projection is symmetric.
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