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Preface

Historical Background

Non-commutative probability studies random variables which do not commute with each other.
While classical probability takes measure theory as its foundation, non-commutative probability
is formulated in terms of an algebra B of operators on a Hilbert space. The expectation is
replaced by a state, a type of linear map E : B → C.

In the non-commutative world, there are several types of independence. Free independence
was discovered first in the 1980’s and 1990’s in the work of Dan Voiculescu. Free probability
provided a surprising link between von Neumann algebras and random matrix theory. There is
also a striking analogy between free probability and classical probability, including free versions
of conditional expectations, the central limit theorem, non-commutative derivatives, a free
Stein’s method, free entropy, free Lèvy processes.

The role of the Fourier transform in manipulating the laws of random variables was played
by certain complex-analytic functions related to the Cauchy-Stieltjes transform of a measure.
In particular, the R-transform of a law µ is an analytic function near the origin which is
additive when we add freely independent random variables. The power series coefficients of the
R-transform are known as free cumulants, and the moments and cumulants of a law are related
by a combinatorial formula involving non-crossing partitions, due to Roland Speicher.

Later, several other types of independence were discovered, notably Boolean and mono-
tone independence (as well as its mirror image, anti-monotone independence). Many of the
tools and results from free probability had Boolean and monotone analogues, including ana-
lytic transforms, moment-cumulant formulas, the central limit theorem, processes with inde-
pendent increments. In particular, there is a bijection between Levy processes for classical,
free, Boolean, monotone, and anti-monotone independence, due to Bercovici and Pata in the
free/classical/Boolean case.

Operator-valued non-commutative probability is a further generalization of non-commutative
probability, in which the expectation is not scalar-valued, but rather takes values in a C∗-algebra
A. One of the main motivations was that if A is a subalgebra of a tracial von Neumann al-
gebra (B, τ), then there is a conditional expectation B → A, which can be thought of as an
A-valued expectation and has many of the same properties as the scalar-valued expectation
τ . Furthermore, conditional independence can be thought of simply as an A-valued version of
independence.

Thus, in the operator-valued theory we take the additional complexity of conditioning and
remove it at the cost of enlarging the algebra of scalars. Many other types of complexity can
be absorbed into the algebra A in this way. For example, the law of a tuple X1, . . . , Xn over
A can be represented as the Mn(A)-valued law of the diagonal matrix X1 ⊕ · · · ⊕Xn. A non-
commutative polynomial over A can be reprsented as a monomial over Mn(A). The resolvent
of a polynomial in X1, . . . , Xn can be represented as the corner of a matrix-valued resolvent
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(z − X̂)−1 where z is scalar matrix and X̂ is a matrix with entries that are affine in X1, . . . ,
Xn.

Motivated by these examples, mathematicians began to develop operator-valued non-commutative
probability along the same lines as scalar-valued non-commutative probability. They adapted
each type of independence to the operator-valued setting as well as analytic transforms, cumu-
lants, the central limit theorem, and Levy processes. A crucial difference is that in the A-valued
setting, the notions of positivity for laws and analyticity for the various transforms associated
to a law need to take into account matrix amplification. This means, roughly speaking, that
anything we write down should make sense in Mn(A) just as well as it does in A.

Scope and Approach

These notes will study the mathematical theory of operator-valued non-commutative prob-
ability. We will focus on the properties of independent random variables for four types of
independence (free, Boolean, monotone, and anti-monotone). The end goals are the central
limit theorem and the theory of processes with independent increments (including a general-
ized Bercovici-Pata bijection). We reach these goals using primarily three tools:

1. Construction of A-valued Hilbert spaces on which the random variables act.

2. Analytic transforms associated to an A-valued law.

3. Combinatorial formulas for moments.

Unlike a journal article that presents new results, notes have the ability to be self-contained
and systematic. With the benefit of hindsight, we can distill the results of many articles into
a unified framework, establish consistent notation, and optimize the proofs of fundamental
results.

For example, here we will develop the analogy between the four types of independence
systematically, proving results about all four types in parallel. This has not been done in a
journal article due to length limitations and because the four types of independence studied
here were discovered (and adapted to the operator-valued setting) at different times.

Moreover, a good analytic characterization of operator-valued Cauchy-Stieltjes transforms
was not available until 2013 (due to Williams). This means that many of the papers that
initially developed operator-valued independence did not have this result available at the time
of writing, and thus they had to rely less on analytic tools. But now, using the newer analytic
theory, we can offer a cleaner presentation of some of the older results.

In writing a self-contained exposition, it is necessary to restrict the scope. We have chosen to
leave out other notions of independence (including classical independence) in favor of a stronger
analogy between the four types included. Moreover, we will not explore the connections with
physics or random matrix theory. And, apart from the introduction and exercises, we will work
in the abstract setting of operator-valued probability, without much reference to the specific
examples which motivated the theory. Rather, our emphasis will be on the analogies with
classical probability theory and complex analysis.
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Chapter 1

Setup of the A-Valued Theory

1.1 Background on C∗-algebras

As background, we recall some fundamentals of the theory of C∗-algebras. We do not give proofs
for many of the statements. We refer to Blackadar [Bla06, Chapter II] for an encyclopedic list
of results, proof sketches, and references.

C∗-algebras and ∗-homomorphisms

Definition 1.1.1. A ∗-algebra over C is an algebra over C together with a map a 7→ a∗ such
that (a∗)∗ = a, the ∗ operation is conjugate-linear, and (ab)∗ = b∗a∗. If A and B are ∗-algebras,
then a ∗-homomorphism ρ : A → B is a homomorphism such that ρ(a∗) = ρ(a)∗.

Definition 1.1.2. A (unital) C∗-algebra is a unital ∗-algebra A over C together with a norm
‖·‖ such that

1. (A, ‖·‖) is a Banach space.

2. ‖ab‖ ≤ ‖a‖‖b‖.

3. ‖a∗a‖ = ‖a‖2.

Theorem 1.1.3. Let H be a Hilbert space. If A is a subalgebra of B(H) which is closed
under adjoints and closed in operator norm, then A is a C∗-algebra, where the ∗-operation is
the adjoint and the norm is the operator norm. Conversely, every C∗-algebra is isometrically
∗-isomorphic to such a C∗-algebra of operators on a Hilbert space.

Proposition 1.1.4. Suppose that A and B are C∗-algebras.

1. If ρ : A → B is a ∗-homomorphism, then ‖ρ(a)‖ ≤ ‖a‖ for every a ∈ A.

2. If ρ : A → B is an injective ∗-homomorphism, then ‖ρ(a)‖ = ‖a‖ for every a ∈ A.

3. If A is a C∗-algebra, then there is only one norm on A which satisfies the C∗-algebra
conditions.

1



2 CHAPTER 1. SETUP OF THE A-VALUED THEORY

Positivity and States

Definition 1.1.5. An element a of a C∗-algebra A is said to be positive if a can be written
as x∗x for some x ∈ A. We also write this condition as a ≥ 0. Furthermore, we write a ≥ b if
a− b ≥ 0.

Definition 1.1.6. A linear functional φ ∈ A∗ is positive if a ≥ 0 implies φ(a) ≥ 0.

Definition 1.1.7. A state on a C∗-algebra A is a positive linear functional with φ(1) = 1. We
denote the set of states by S(A).

Proposition 1.1.8. Let A be a C∗-algebra.

1. Suppose that A is a C∗-algebra acting on a Hilbert space H. An element a ∈ A is positive
if and only if a is a positive operator on H.

2. If φ is a positive linear functional, then ‖φ‖A∗ = |φ(1)|. In particular, the norm of a state
is 1.

3. If a ∈ A is self-adjoint, then

‖a‖ = sup
φ∈S(A)

|φ(a)|.

4. If a ∈ A, then a is self-adjoint if and only if φ(a) is real for every state φ.

5. If a ∈ A, then we have a ≥ 0 if and only if φ(a) ≥ 0 for every state φ.

The GNS Construction

Given a state φ on a C∗-algebra A, one can define a sesquilinear form on A by 〈a, b〉φ = φ(a∗b).
This form is nonnegative definite, and hence it satisfies the Cauchy-Schwarz inequality. If
Kφ = {a : φ(a∗a) = 0}, then the completion of H/Kφ with respect to ‖a‖φ = φ(a∗a)1/2 is a
Hilbert space, which we denote by L2(A, φ).

Moreover, every a ∈ A defines a bounded operator on L2(A, φ) by left multiplication.
Indeed, because a 7→ φ(b∗ab) is a positive functional and ‖a‖2 − a∗a ≥ 0, we have ‖ab‖2φ =

φ(b∗a∗ab) ≤ ‖a‖2φ(b∗b) = ‖a‖2‖b‖2φ. Thus, the multiplication action of a is well-defined on the

completed quotient L2(A, φ).

Therefore, there is a ∗-homomorphism πφ : A → B(L2(A, φ)) given by πα(a)[b] = [ab],
where [b] is the equivalence class of b in the completed quotient. This is called the Gelfand-
Naimark-Segal representation of A on L2(A, φ). Furthermore, as a consequence of Proposition
1.1.8 (3), we have the following representation of A.

Theorem 1.1.9. Let H =
⊕

φ∈S(A) L
2(A, φ), and let π : A → B(H) be the direct sum of the

GNS representations πα. Then π is an isometric ∗-isomorphism.

This construction is the basis of the fact that every C∗-algebra can be represented concretely
on a Hilbert space.
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Matrices over a C∗-algebra

Suppose that A is a C∗-algebra and let us realize A as an algebra of operators on the Hilbert
space H as in Theorem 1.1.3. Then a matrix x ∈ Mn×m(A) = A ⊗Mn×m(C) can be viewed
as an operator Hn → Hm, and we denote by ‖x‖ its operator norm. Note that Mn×m(A) is
already complete in the operator norm.

In particular, Mn(A) is a C∗-algebra. Moreover, Proposition 1.1.4 (3) implies that Mn(A)
has a unique norm and thus the norm is independent of our choice of representation for A on a
Hilbert space H. Furthermore, the norm on Mn×m(A) is also independent of the representation
because if x ∈ Mn×m(A) then the operator norm satisfies ‖x‖2 = ‖x∗x‖, and x∗x ∈ Mm(A)
hence ‖x∗x‖ is independent of the choice of representation.

Furthermore, there is a coordinate-free characterization of positivity in Mn(A) in terms of
positivity in A.

Lemma 1.1.10. Let A ∈Mn(A). Then the following are equivalent:

1. A ≥ 0 in A.

2. For every v ∈M1×n(A), we have v∗Av ≥ 0 in A.

Proof. As in Theorem 1.1.9, we can represent A as a concrete C∗-algebra of operators on
H :=

⊕
φ∈S(A)Hφ, where Hφ = L2(A, φ).

We can view A as an operator Hn → Hn and v as an operator H → Hn. If A ≥ 0, then
v∗Av is positive by the basic theory of operators on Hilbert space, and hence v∗Av ≥ 0 in A.

Conversely, suppose that (2) holds. Observe that

Hn =
⊕

φ∈S(A)

Hnφ,

and the action of A on Hn is the direct sum of its actions on each Hnφ. So it suffices to show
that A|Hnφ is positive for each state φ. We know that for each v ∈M1×n(A) ∼= An, we have

φ(v∗Av) ≥ 0.

Let [v] denote the vector ([v1], . . . , [vn]) as an equivalence class in Hnφ. Then 〈[v], A[v]〉 ≥ 0.
Such vectors [v] are dense in Hφ by construction and hence A|Hφ ≥ 0 as desired.

1.2 Right Hilbert A-modules

We begin with the A-valued analogue of a Hilbert space. Right Hilbert A-modules were in-
troduced by Kaplansky [Kap53], Paschke [Pas73], and Rieffel [Rie74]. For further detail, see
[Lan95]. A list of theorems and references can be found in [Bla06, §II.7].

Definition, Inner Products, Completions

Definition 1.2.1. Let H be a right A-module. Then an A-valued pre-inner product on H is a
map 〈·, ·〉 : H×H → A such that

1. Right A-linearity: We have

〈ξ, ζ1a1 + ζ2a2〉 = 〈ξ, ζ1〉a1 + 〈ξ, ζ2〉a2.

for ξ, ζ1, ζ2 ∈ H and a1, a2 ∈ A.
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2. Symmetry: We have 〈ξ, ζ〉∗ = 〈ζ, ξ〉.

3. Nonnegativity: 〈ξ, ξ〉 ≥ 0 in A for every ξ ∈ H.

If in addition, 〈ξ, ξ〉 = 0 implies that ξ = 0, then we say 〈·, ·〉 is an A-valued inner product.

Observation 1.2.2. An A-valued pre-inner product satisfies 〈ζ1a1 + ζ2a2, ξ〉 = a∗1〈ζ1, ξ〉 +
a∗2〈ζ2, ξ〉.

Lemma 1.2.3. Let H be a right A-module with an A-valued pre-inner product, and denote
‖ξ‖ = ‖〈ξ, ξ〉‖1/2.

1. 〈ζ, ξ〉〈ξ, ζ〉 ≤ ‖ξ‖2〈ζ, ζ〉.

2. ‖〈ξ, ζ〉‖ ≤ ‖ξ‖‖ζ‖.

3. ‖ξ‖ = ‖〈ξ, ξ〉‖1/2 defines a semi-norm on H.

4. ‖ξ‖ = sup‖ζ‖≤1‖〈ξ, ζ〉‖.

Proof. Suppose that φ ∈ S(A). Then φ(〈ξ, ζ〉) is a scalar-valued pre-inner product and therefore
satisfies the Cauchy-Schwarz inequality. Thus, we have

φ(〈ζ, ξ〉〈ξ, ζ〉) = φ(〈ζ, ξ〈ξ, ζ〉〉) ≤ φ(〈ζ, ζ〉)1/2φ(〈ξ〈ξ, ζ〉, ξ〈ξ, ζ〉〉)1/2

= φ(〈ζ, ζ〉)1/2φ(〈ξ, ζ〉∗〈ξ, ξ〉〈ξ, ζ〉)1/2

Next, note that a 7→ φ(〈ξ, ζ〉∗a〈ξ, ζ〉) is positive linear functional on A and therefore

|φ(〈ξ, ζ〉∗〈ξ, ξ〉〈ξ, ζ〉)| ≤ ‖〈ξ, ξ〉‖φ(〈ξ, ζ〉∗〈ξ, ζ〉) = ‖ξ‖2φ(〈ξ, ζ〉∗〈ξ, ζ〉).

Altogether,
φ(〈ζ, ξ〉〈ξ, ζ〉) ≤ φ(〈ζ, ζ〉)1/2‖ξ‖φ(〈ζ, ξ〉〈ξ, ζ〉)1/2.

We cancel the term φ(〈ζ, ξ〉〈ξ, ζ〉)1/2 from both sides and then square the inequality to obtain

φ(〈ζ, ξ〉〈ξ, ζ〉) ≤ ‖ξ‖2φ(〈ζ, ζ〉).

Because 〈ζ, ξ〉〈ξ, ζ〉 and ‖ξ‖2〈ζ, ζ〉 are self-adjoint elements of A and this inequality holds for
every state φ, we have

〈ζ, ξ〉〈ξ, ζ〉 ≤ ‖ξ‖2〈ζ, ζ〉,

so (1) is proved. Inequality (2) follows by taking the norm of both sides in A and then taking
the square root.

The norm on H is clearly positive homogeneous. The triangle inequality holds because

‖ξ + ζ‖2 = ‖〈ξ + ζ, ξ + ζ〉‖
≤ ‖〈ξ, ξ〉‖+ ‖〈ξ, ζ〉‖+ ‖〈ζ, ξ〉‖+ ‖〈ζ, ζ〉‖
≤ (‖ξ‖+ ‖ζ‖)2.

This proves (3). Moreover, (4) follows immediately from the Cauchy-Schwarz inequality (2).

Definition 1.2.4. A right Hilbert A-module is a right A-module with an A-valued pre-inner
product such that H is a Banach space with respect to the semi-norm ‖ξ‖ = ‖〈ξ, ξ〉‖1/2.
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Lemma 1.2.5. Let H be a right A-module with an A-valued pre-inner product. Define

K = {ξ ∈ H : ‖ξ‖ = 0}.

Then 〈·, ·〉 defines an inner product H/K, and the completion of H/K with respect to the cor-
responding norm is a right Hilbert A-module.

Proof. The Cauchy-Schwarz inequality implies that 〈·, ·〉 yields a well-defined inner product on
H/K. The right A-action is bounded with respect to the norm of H since

‖ξa‖2 = ‖〈ξa, ξa〉‖ = ‖a∗〈ξ, ξ〉a‖ ≤ ‖ξ‖2‖a‖2.

Thus, the right A-action maps K into K and hence passes to a bounded action on the quotient.
This in turn extends to the completion. The A-valued inner product on H/K extends to an
A-valued inner product on the completion because of the Cauchy-Schwarz inequality and the
boundedness of the right A-action.

Orthogonality

Definition 1.2.6. If H is a right Hilbert A-module, then we say that ξ1, . . . , ξn ∈ H are
orthogonal if 〈ξi, ξj〉 = 0 for i 6= j.

Unlike the scalar case, there is no reason why orthogonormal bases would exist in general.
However, when we have orthogonal vectors, a version of the Pythagorean identity still holds

Observation 1.2.7. If ξ1, . . . , ξn are orthogonal, then〈
n∑
j=1

ξj ,

n∑
j=1

ξj

〉
=

n∑
j=1

〈ξj , ξj〉,

and hence ∥∥∥∥∥∥
n∑
j=1

ξj

∥∥∥∥∥∥ ≤
∑
j=1

‖ξj‖2
1/2

.

Operators on Right Hilbert A-modules

Definition 1.2.8. Let H1 and H2 be right Hilbert A-modules. A linear map T : H1 → H2 is
bounded if

‖T‖ := sup
‖h‖≤1

‖Th‖ < +∞.

We say that T is right-A-linear if (Th)a = T (ha) for each a ∈ A.

The adjoint of a linear operator is defined the same way as in the scalar case, except that
there is a no guarantee that an adjoint exists.

Definition 1.2.9. Let T : H1 → H2 be a bounded right-A-linear map between right Hilbert
A-modules. Then T is adjointable if there exists T ∗ : H2 → H1 such that

〈Th1, h2〉H2 = 〈h1, T
∗h2〉H1 .

In this case, we say that T ∗ is an adjoint for T .
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Proposition 1.2.10.

1. If T : H1 → H2 is adjointable, then the adjoint is unique.

2. If T : H1 → H2 and S : H2 → H3 are adjointable, then (ST )∗ = T ∗S∗.

3. If T is adjointable, then T ∗ is adjointable and T ∗∗ = T .

4. ‖T ∗T‖ = ‖T‖2 = ‖T ∗‖2.

Proof. (1) Suppose that S and S′ are two adjoints for T . Then for every h1 and h2, we have

〈h1, (S − S′)h2〉 = 〈Th1, h2〉 − 〈Th1, h2〉 = 0.

For each h2, we can take h1 = (S − S′)h2 to conclude that Sh2 = S′h2.
(2) Given that the adjoint is unique, this equality follows from the fact that

〈STh1, h3〉 = 〈Th1, S
∗h3〉 = 〈h1, S

∗T ∗h3〉.

(3) Note that

〈T ∗h2, h1〉 = 〈h1, T
∗h2〉∗ = 〈Th1, h2〉∗ = 〈h2, Th1〉.

(4) Observe that

‖T‖ = sup
‖h1‖≤1

‖Th1‖ = sup
‖h1‖,‖h2‖≤1

‖〈Th1, h2〉‖

= sup
‖h1‖,‖h2‖≤1

‖〈h1, T
∗h2〉‖ = sup

‖h1‖,‖h2‖≤1

‖〈T ∗h2, h1〉‖ = ‖T ∗‖.

Moreover, using the Cauchy-Schwarz inequality,

‖T ∗T‖ = sup
‖h1‖,‖h′1‖≤1

‖〈T ∗Th1, h
′
1〉‖ = sup

‖h1‖,‖h′1‖≤1

‖〈Th1, Th
′
1〉‖ =

(
sup
‖h1‖≤1

‖Th1‖

)2

= ‖T‖2.

Definition 1.2.11. We denote the ∗-algebra of bounded, adjointable, right-A-linear operators
H → H by B(H).

1.3 Hilbert Bimodules

Now we introduce the A-valued analogue of a representation of a C∗-algebra on a Hilbert space.

Definition 1.3.1. Let A and B be C∗-algebras. Then a Hilbert B-A-bimodule is a right Hilbert
A-module H together with ∗-homomorphism π : B → B(H).

In this case, for b ∈ B, we write bξ := π(b)ξ, and thus view H as a B-A-bimodule. The left
and right actions commute because by definition B(H) consists of right-A-linear operators.

A Hilbert B-A-bimodule can be thought of as a representation of a C∗-algebra B on an
A-valued Hilbert space. Of course, a Hilbert C-A-bimodule is equivalent to a right Hilbert
A-module.
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Direct Sums

Given a family of Hilbert B-A-bimodules {Hi}i∈I , we define the direct sum
⊕

i∈I Hi as the
completion of the algebraic direct sum with respect to the A-valued inner product〈∑

i∈I
ξi,
∑
i∈I

ζi

〉
=
∑
i∈I
〈ξi, ζi〉Hi ,

where
∑
i∈I ξi and

∑
i∈I ζi are elements of the algebraic direct sum represented as sums of

ξi ∈ Hi and ζi ∈ Hi with only finitely many nonzero terms.
We must still verify that this definition makes sense. It is straightforward to check that this

is an inner product, and therefore the completion is well-defined as a right Hilbert A-module
by Lemma 1.2.5. But it remains to show that left B-action is bounded and extends to the
completion. Let b ∈ B and let

∑
i∈I ξi be in the algebraic direct sum. Then ‖b‖2 − b∗b ≥ 0 in

B, and hence

‖b‖2〈ξi, ξi〉 − 〈bξi, bξi〉 = 〈ξi, (‖b‖2 − b∗b)ξi〉 ≥ 0,

which implies that〈
b
∑
i∈I

ξi, b
∑
i∈I

ξi

〉
=
∑
i∈I
〈bξi, bξi〉 ≤ ‖b‖2

∑
i∈I
〈ξi, ξi〉 = ‖b2‖

〈∑
i∈I

ξi,
∑
i∈I

ξi

〉
.

Therefore, the B-action is bounded and so extends to the completion.
The direct sum operation is commutative and associative, up to natural isomorphism.

Tensor Products

Suppose we are given a Hilbert C-B-bimodule K and a Hilbert B-A-bimodule H and. Then we
define the tensor product K⊗BH by equipping the algebraic tensor product with the pre-inner
product

〈ξ1 ⊗ ζ1, ξ2 ⊗ ζ2〉 = 〈ζ1, 〈ξ1, ξ2〉ζ2〉

and then forming the completed quotient as in Lemma 1.2.5.
Let us expound the definition in more detail and verify that the construction makes sense.

Let V be the algebraic tensor product of K and H over B. That is, V is the vector space spanned
by ξ ⊗ ζ, where ξ ∈ K and ζ ∈ H, modulo the span of vectors of the form

ξ ⊗ (ζ1 + ζ2)− ξ ⊗ ζ1 − ξ ⊗ ζ2, (ξ1 ⊗ ξ2)⊗ ζ − ξ1 ⊗ ζ − ξ2 ⊗ ζ,ξb⊗ ζ − ξ ⊗ bζ,

where b ∈ B. Note that V is a C-A-bimodule with the actions given by

c(ξ ⊗ ζ) = cξ ⊗ ζ, (ξ ⊗ ζ)a = ξ ⊗ ζa.

We equip V with a A-valued form 〈·, ·〉 given by

〈ξ1 ⊗ ζ1, ξ2 ⊗ ζ2〉 = 〈ζ1, 〈ξ1, ξ2〉ζ2〉.

Observe that if we replace ξjb ⊗ ζj with ξj ⊗ bζj for j = 1 or 2 and b ∈ B, the result is
unchanged due to the right B-linearity of the inner product on K; therefore, this A-valeud form
on V is well-defined. It is straighforward to check that this A-valued form is right A-linear and
symmetric.
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In order to check that this is nonnegative, consider a sum of simple tensors
∑n
j=1 ξj ⊗ ζj .

Note that 〈∑
i

ξi ⊗ ζi,
∑
j

ξj ⊗ ζj

〉
=
∑
i,j

〈ζi, 〈ξi, ξj〉ζj〉 = 〈~ζ,X~ζ〉Hn ,

where ζ = (ζ1, . . . , ζn) ∈ Hn and X is the matrix [〈ξi, ξj〉]i,j in Mn(B). We claim that X ≥ 0
in Mn(B). This follows from Lemma 1.1.10 because for v ∈Mn×1(B), then

v∗Xv =
∑
i,j

〈ξivi, ξjvj〉 =

〈∑
i

ξivi,
∑
j

ξjvj

〉
≥ 0.

Thus, X can be written as B∗B for some B ∈Mn(B). Thus,

〈~ζ,X~ζ〉Hn = 〈B~ζ,B~ζ〉Hn ≥ 0.

This shows nonnegativity of the inner product.
Therefore, Lemma 1.2.5 shows that the completed quotient of V with respect to 〈·, ·〉 is a

well-defined right Hilbert A-module K ⊗B H. Finally, we must verify that the left C-action is
well-defined. Let c ∈ C. Then ‖c‖2 − c∗c ≥ 0, so that ‖c‖2 − c∗c = x∗x for some x ∈ C. Thus,
for a simple tensor

∑
j ξj ⊗ ζj , we have〈∑

i

ξi ⊗ ζi, (‖c‖2 − c∗c)
∑
j

ξj ⊗ ζj

〉
=

〈∑
i

xξi ⊗ ζi,
∑
j

xξj ⊗ ζj

〉
≥ 0,

which implies that〈
c
∑
i

ξi ⊗ ζi, c
∑
j

ξj ⊗ ζj

〉
≤ ‖c‖2

〈∑
i

ξi ⊗ ζi,
∑
j

ξj ⊗ ζj

〉
.

Hence, the action of c is bounded and thus passes to the completed quotient. Moreover, direct
computation shows that the action of C is a ∗-homomorphism.

This shows that the tensor product is well-defined. Furthermore, it is straightforward to
check that the tensor product is associative, that is, if Hj is an Aj-Aj−1-bimodule for j = 1,
2, 3, then

(H3 ⊗A2
H2)⊗A1

H1
∼= H3 ⊗A2

(H2 ⊗A1
H1)

as a Hilbert A3-A0-bimodule. In particular, we can unambiguously write

Hn ⊗An−1
· · · ⊗A1

H1

as a Hilbert An-A0-bimodule when Hj is a HIlbert Aj-Aj−1 bimodule. Moreover, tensor
products distribute over direct sums in the obvious way.

1.4 Completely Positive Maps and the GNS Construction

Now we will define the A-valued analogue of positive linear functionals on an algebra B and
the GNS construction. It turns out that positivity of a map σ : B → A is not a strong
enough condition to make the GNS construction work. Rather, we need the notion of complete
positivity. Complete positivity was first studied by Stinespring [Sti55], and the operator-valued
GNS construction is closely related to the Stinespring dilation theorem and its extension by
Kasparov [Kas80]. For further references, see [Bla06, §II.6.9-10, §II.7.5].



1.4. COMPLETELY POSITIVE MAPS AND THE GNS CONSTRUCTION 9

Definition 1.4.1. Let σ : B → A be a linear map. We denote by σ(n) : Mn(B)→Mn(A) the
map given by applying σ entrywise. We say that σ is completely positive if σ(n) is positive for
every n, that is, σ(n)(B∗B) ≥ 0 for every B ∈Mn(B).

Lemma 1.4.2. Let H be an Hilbert B-A-bimodule and ξ ∈ H. Then σ(b) := 〈ξ, bξ〉 is a
completely positive map B → A.

Proof. Choose a positive element B∗B in Mn(B) and write B = [bi,j ]. By Lemma 1.1.10, to
show that σ(n)(B∗B) ≥ 0, it suffices to show that for v ∈Mn×1(A), we have v∗σ(n)(B∗B)v ≥ 0.
But

v∗σ(n)(B∗B)v =
∑
i,j

〈ξvi, (B∗B)i,jξvj〉 =
∑
i,j,k

〈Bk,iξvi, Bk,jξvj〉 = 〈B(ξv), B(ξv)〉Hn ≥ 0,

where ξv ∈ Hn is the vector (ξv1, . . . , ξvn) and B acts on Hn by matrix multiplication in the
obvious way.

Conversely, we will show that every completely positive map σ : B → A can be realized by
a vector ξ in a Hilbert B-A-bimodule. We define a bimodule B⊗σA by equipping the algebraic
tensor product B ⊗A over C with the pre-inner product

〈b1 ⊗ a1, b2 ⊗ a2〉 = a∗1σ(b∗1b2)a2.

This pre-inner product is clearly right A-linear and symmetric. To show that it is nonnegative,
consider a vector

ξ =

n∑
j=1

bj ⊗ aj

and note that
〈ξ, ξ〉 =

∑
i,j

a∗i σ(b∗i bj)aj .

The matrix C = [b∗i bj ] can be written in the form B∗B and hence is positive in Mn(B).
Therefore, by complete positivity of σ, the matrix [σ(b∗i bj)] is positive in Mn(A). Then by
Lemma 1.1.10,

∑
i,j a

∗
i σ(b∗i bj)aj ≥ 0 in A. This shows nonnegativity of the pre-inner product.

Thus, by Lemma 1.2.5, we can define the completed quotient B ⊗σ A as a right Hilbert
A-module. Finally, we claim that the left multiplication action of B on B ⊗ A passes to the
completed quotient. To do this, it suffices to show that this action is bounded with respect to
〈·, ·〉.

The argument is the same as in the construction of the tensor product for bimodules. Given
b ∈ B, we have ‖b‖2 − b∗b ≥ 0 and hence it can be written as x∗x for some x ∈ B. Using
complete positivity, one argues that 〈cξ, cξ〉 ≥ 0 whenever ξ =

∑n
j=1 bj⊗aj . Thus, we conclude

that ‖bξ, bξ‖ ≤ ‖b‖2〈ξ, ξ〉. In summary, we have shown that the following definition makes
sense.

Definition 1.4.3. Let σ : B → A be completely positive. We denote by B ⊗σ A the Hilbert
B-A-bimodule defined as the completed quotient of the algebraic tensor product B ⊗A over C
with respect to the pre-inner product 〈b1 ⊗ a1, b2 ⊗ a2〉 = a∗1σ(b∗1b2)a2.

Moreover, a direct computation shows the following.

Lemma 1.4.4. Let σ : B → A be completely positive. Let ξ be the vector 1⊗1 in B⊗σA. Then
σ(b) = 〈ξ, bξ〉. In particular, a map σ is completely positive if and only if it can be expressed
as σ(b) = 〈ξ, bξ〉 for some ξ in a Hilbert B-A-bimodule H.
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Finally, let us point out, that just as in the case of states, completely positive maps are
automatically bounded (in fact, completely bounded).

Lemma 1.4.5. Let σ : B → A be completely positive. If B ∈ Mn(B), then ‖σ(n)(B)‖ ≤
‖σ(1)‖‖B‖.

Proof. First, consider b ∈ B (for the case n = 1). Let H = B ⊗σ A and ξ = 1 ⊗ 1. Then by
Cauchy-Schwarz,

‖σ(b)‖ = ‖〈ξ, bξ〉‖ ≤ ‖ξ‖‖bξ‖ ≤ ‖b‖‖ξ‖2 = ‖b‖‖σ(1)‖.

For n > 1, note that if σ is completely positive, then σ(n) is also completely positive and hence
by the preceding argument ‖σ(n)(B)‖ ≤ ‖B‖‖σ(n)(1)‖ = ‖B‖‖σ(1)‖.

1.5 A-valued Probability Spaces

Completely positive maps are the A-valued analogue of positive linear functionals on C∗-
algebras and measures on compact Hausdorff spaces. The analogue of a state or probabil-
ity measure is a A-valued expectation. While conditional expectations have a long history in
C∗-algebra theory, the probabilistic point of view is due largely to Voiculescu [Voi95].

Definition 1.5.1. Let A ⊆ B be unital C∗-algebras. An A-valued expectation E : B → A is a
unital positive A-A-bimodule map.

Remark 1.5.2. Complete positivity is automatic in this case. Indeed, if A ⊆ B and Φ : B → A
is a positive A-A-bimodule map, then Φ is completely positive. To see this, consider a positive
element B∗B ∈ B and given v ∈M1×n(A). Then we have

v∗E(n)[B∗B]v = E[v∗B∗Bv] ≥ 0

since v∗B∗Bv ≥ 0 in B by Lemma 1.1.10. Since v∗E(n)[B∗B]v ≥ 0 for every v, Lemma 1.1.10
implies that E(n)[B∗B] ≥ 0.

This is also known in the literature as a conditional expectation B → A. More explicitly, by
“unital” we mean that E[1] = 1 and by “A-A-bimodule map,” we mean that E[ab] = aE[b] and
E[ba] = E[b]a for b ∈ B and a ∈ A. The unital condition is the analogue of the normalization of
a state or probability measure, and the A-A-bimodule property is the analogue of the property
that E[f(X)g(Y )|X] = f(X)E[g(Y )|X] in classical probability theory.

We have seen that a completely positive map B → A can always be represented 〈ξ, bξ〉
for a vector ξ in a Hilbert B-A-bimodule. Let us now describe when 〈ξ, bξ〉 is a conditional
expectation.

Definition 1.5.3. Let H be a Hilbert A-A-bimodule. A vector ξ ∈ H is said to be a unit
vector if 〈ξ, ξ〉 = 1. We say that ξ is A-central if aξ = ξa for a ∈ A.

Lemma 1.5.4. Let A ⊆ B be a unital inclusion of C∗-algebras. If ξ is an A-central vector in
a Hilbert B-A-bimodule H, then E[b] := 〈ξ, bξ〉 is an A-valued expectation. Conversely, if E is
an A-valued expectation, then the vector ξ = 1⊗ 1 in B ⊗E A is an A-central unit vector.

Proof. Suppose that ξ is an A-central unit vector in H and E[b] = 〈ξ, bξ〉. We already know E
is completely positive. Moreover, E is unital because ξ is a unit vector. Finally, to show that
E is an A-A-bimodule map, observe that

E[ba] = 〈ξ, baξ〉 = 〈ξ, bξa〉 = 〈ξ, bξ〉a = E[b]a.
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On the other hand,

E[ab] = 〈ξ, abξ〉 = 〈a∗ξ, bξ〉 = 〈ξa∗, bξ〉 = a〈ξ, bξ〉 = aE[b].

Conversely, suppose that E is an A-valued expectation and let ξ = 1⊗1 in B⊗EA. Clearly,
ξ is unit vector because 〈ξ, ξ〉 = 1∗E[1∗1]1 = 1. Moreover, we claim that a ⊗ 1 = 1 ⊗ a in the
completed quotient space B ⊗E A. To see this, note that

〈a⊗ 1− 1⊗ a, a⊗ 1− 1⊗ a〉 = a∗E[1]a− a∗E[a]− E[a∗]a+ E[a∗a] = 0.

It follows that

aξ = a(1⊗ 1) = a⊗ 1 = 1⊗ a = (1⊗ 1)a = ξa,

so that ξ is A-central.

Remark 1.5.5. A careful examination of the proof for the converse direction shows that we did
not use the full strength of the A-A-bimodule map assumption, only that E|A = id. Therefore,
we have shown that if E is completely positive and E|A = id, then E is automatically an
A-A-bimodule map.

Definition 1.5.6. An A-valued probability space is a pair (B, E), where B ⊇ A is a C∗-algebra
and E : B → A is an A-valued expectation, such that the representation of B on B ⊗E A is
faithful, that is, the ∗-homomorphism B → B(B ⊗E A) is injective.

This last condition that the representation is faithful is a type of non-degeneracy condition.
For example, in the scalar-valued case where B = C(X) for a compact Hausdorff space and
E is given by a probability measure P , the faithfulness condition says that (closed) support
of P in X is all of X. In the operator-valued setting, this condition says intuitively that all
information about the algebra B can be captured from the expectation E. This is a reasonable
assumption because in non-commutative probability theory, we only care about aspects of the
algebra that are observable from E.

1.6 A-valued Laws and Generalized Laws

We now turn to the definition of A-valued laws (and generalized laws). The results of this
section are based on [Voi95], [PV13], [AW16].

As motivation, recall that if b is a real random variable on a probability space (X,P ), then
the law of X is the measure µb on R given by

∫
f dµb = E[f(b)]. Similarly, if φ : B → C is a

state and b ∈ B is self-adjoint, then the law of B with respect to φ is the measure µb given by∫
f dµb = φ(f(b)). In either case, if the measure µb is compactly supported, then it is uniquely

specified by its moments
∫
tn dµb(t) = φ(bn).

Now consider the case of a self-adjoint b in an A-valued probability space (B, E). We want
the law µb to encode the moments

E[a0ba1 . . . ban]

for every a1, . . . , an ∈ A. Because there is no clear way to express these moments in terms
of a measure, we will simply define the law of b as the sequence of moments, or equivalently a
linear map from non-commutative polynomials in b with coefficients in A to the base algebra
A.
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Definition 1.6.1. We denote by A〈X〉 the algebra of non-commutative polynomials in X with
coefficients in A, that is, A〈X〉 is the linear span of terms of the form a0Xa1X . . . ak−1Xak.
We endow A〈X〉 with the ∗-operation

(a0Xa1X . . . ak−1Xak)∗ = a∗kXa
∗
k−1 . . . Xa

∗
1Xa

∗
0.

Definition 1.6.2. Let (B, E) be an A-valued probability space and b a self-adjoint element of
B. The law of B is the map µb : A〈X〉 → A given by p(X) 7→ E[p(b)].

In probability theory, it is a standard fact that every law µ (probability measure on R) is
the law of some random variable. Indeed, the random variable given by the x-coordinate on the
probability space (R, µ) will have the law µ. Thus, laws which arise from random variables are
characterized abstractly as measures. In operator-valued non-commutative probability, there is
also an abstract characterization of laws, and a way to explicitly construct a random variable
which realizes a given law, a version of the GNS construction.

Definition 1.6.3. An A-valued law is a linear map µ : A〈X〉 → A such that

1. µ is completely positive: For any P (X) ∈Mn(A〈X〉) we have µ(n)(P (X)∗P (X)) ≥ 0.

2. µ is exponentially bounded: There exist some C > 0 and M > 0 such that

‖µ(a0Xa1X . . . ak−1Xak)‖ ≤ CMk‖a0‖ . . . ‖ak‖ for all a1, . . . , ak ∈ A.

3. µ is unital: µ(1) = 1.

4. µ is an A-A-bimodule map: µ(ap(X)a′) = aµ(p(X))a′ for a, a′ ∈ A.

Definition 1.6.4. Let µ : A〈X〉 → A. If ‖µ(a0Xa1X . . . ak−1Xak)‖ ≤ CMk‖a0‖ . . . ‖ak‖,
then we say that M is an exponential bound for µ. Finally, we define the radius of µ as

rad(µ) := inf{M : M is an exponential bound for µ}.

The following theorem is due to [Voi95] and is also proved in [PV13, Proposition 1.2].

Theorem 1.6.5. For a map µ : A〈X〉 → A, the following are equivalent:

1. The map µ is an A-valued law with exponential bound M .

2. There exists an A-valued probability space (B, E) and a self-adjoint X ∈ B such that
µ = µX and ‖X‖ ≤M .

In particular, every law can be realized by an X with ‖X‖ = rad(µ).

To motivate the proof of (1) =⇒ (2), let us rephrase the realization of a probability measure
µ on R in terms of Hilbert spaces and operator algebras. We can construct the Hilbert space
L2(R, µ) as the closure of C[x] with respect to the L2(µ) norm. Let T be the operator of acts
by multiplication on L2(R, µ), and let C∗(T ) be the C∗-algebra generated by T . Equip C∗(T )
with the expectation

E[f(T )] = 〈1, f(T )1〉L2(R,µ) =

∫
R
f(x) dµ(x).

Then (C∗(T ), E) is a scalar-valued C∗-probability space and T ∈ C∗(T ) has the law µ.
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Proof of Theorem 1.6.5. (1) =⇒ (2). We define an A-valued pre-inner-product on A〈X〉 ⊗ A
by

〈f1(X)⊗ a1, f2(X)⊗ a2〉µ = a∗1µ(f1(X)∗g2(X))a2

and denote ‖f(X)‖µ = ‖〈f(X), f(X)〉µ‖1/2. Note that 〈·, ·〉µ is right A-linear, is nonnegative,
and satisfies 〈g(X), f(X)〉 = 〈f(X), g(X)〉∗. Therefore, the Cauchy-Schwarz inequality holds
and we can define the completed quotient with respect to this inner product. Denote this space
by A〈X〉 ⊗µ A.

We want to define B as the C∗-algebra generated by left multiplication action of A〈X〉 on
A〈X〉⊗µA. If f(X) ∈ A〈X〉, then in order to show that the left multiplication action of f(X)
on A〈X〉 passes to a well-defined action on the completed quotient A〈X〉 ⊗µ A, it suffices to
show that

‖f(X)g(X)‖µ ≤ C‖g(X)‖µ
for some C > 0. In fact, because A〈X〉 is the algebra generated by A and X, it suffices to
check the case where f(X) is either some a ∈ A or X.

First, the argument that multiplication by a is well-defined on A〈X〉 ⊗µ A is exactly the
same as the argument for the GNS representation in Definition 1.4.3.

Second, we claim that if M is an exponential bound for µ, then left multiplication by X
defines an operator ρ(X) on L2(A〈X〉, µ) with ‖ρ(X)‖ ≤M . The idea is to show that R2−X2

is a positive operator for R > M . Unlike the case in Definition 1.4.3, we cannot express R2−X2

as ψ(X)∗ψ(X) in A〈X〉. We will fix this problem by looking at a certain analytic completion of
A〈X〉 in which the power series representation of the function ψ(t) =

√
R2 − t2 will converge.

For a monomial a0Xa1 . . . Xak, we denote

p(a0Xa1 . . . Xak) = Mk‖a0‖ . . . ‖ak‖.

Then for f(X) ∈ A〈X〉, we define

‖f(X)‖M = inf


n∑
j=1

p(fj) : fj monomials and f =

n∑
j=1

fj

 .

Let A〈X〉M be the completion of A〈X〉 in this norm. One checks easily that

‖f(X)g(X)‖M ≤ ‖f(X)‖p‖g(X)‖M ,

and this inequality extends to the completion, which makesA〈X〉M a Banach algebra. Similarly,
the ∗-operation on A〈X〉 extends to the completion. By standard results from complex analysis,
the function ψ(t) =

√
R2 − t2 has a power series expansion

ψ(t) =

∞∑
j=0

αjt
j

which converges for |t| < R. In particular, the series converges absolutely for t = M , which
means that

ψ(X) =

∞∑
j=0

αjX
j

is a well-defined element of A〈X〉M . Moreover, because of the absolute convergence, we can
compute ψ(X)2 by multiplying the series term by term and hence conclude that ψ(X)2 =
R2−X2. Because M is an exponential bound for µ, we know that µ extends to the completion
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A〈X〉M and remains completely positive on A〈X〉M . Thus, using complete positivity, for
ξA〈X〉 ⊗ A, we can show that

〈ξ, (R2 −X2)ξ〉µ ≥ 0,

which implies that ‖Xξ‖µ ≤ R‖ξ‖µ. By taking R ↘ M , we have ‖Xξ‖µ ≤ M‖ξ‖µ, which
means that the multiplication operator ρ(X) is well-defined and bounded by M as desired.

This shows that the left multiplication action of A〈X〉 on L2(A〈X〉, µ) is well-defined and
bounded. Let ρ(f(X)) denote the multiplication operator by f(X). Then ρ(f(X)) is adjointable
with adjoint given by ρ(f(X)∗). Therefore, in light of Proposition 1.2.10, the closure of ρ(A〈X〉)
in the operator norm is a C∗-algebra, which we will denote by B.

By linearity of E, we obtain that a⊗1 = 1⊗a for a ∈ A, hence ξ = 1⊗1 is an A-central unit
vector in A〈X〉 ⊗µ A, which implies that E[b] = 〈ξ, bξ〉 is an A-valued expectation on B. The
representation of B on B⊗EA is faithful because B⊗EA ∼= A〈X〉⊗µA as Hilbert B-A-bimodules.
Finally, X = ρ(X) in B has the law µ since µX [f(X)] = E[f(X)] = E[ρ(f(X))] = µ[f(X)].
Therefore, (1) holds.

(2) =⇒ (1). Suppose that µ = µX . Let ρ : A〈X〉 → B be given by ρ(p(X)) = p(X);
note that ρ is a ∗-homomorphism and in particular it is a completely positive, unital, A-A-
bimodule map. Therefore, µ = µb = E ◦ρ is the composition of two completely positive, unital,
A-A-bimodule maps. Moreover, µ is exponentially bounded since

‖µ(a0Xa1 . . . Xak)‖ =
∥∥E(a0Xa1 . . . Xak)

∥∥ ≤ ‖a0Xa1 . . . Xak‖ ≤
∥∥X∥∥k‖a0‖ . . . ‖ak‖.

In fact, this characterization theorem does not require us to assume that µ is an A-A-
bimodule map. The more general result where we drop this assumption will be needed later
for the discussion of various analytic transforms associated to a law.

Definition 1.6.6. An A-valued generalized law is a completely positive and exponentially
bounded map σ : A〈X〉 → A.

Theorem 1.6.7. For a map σ : A〈X〉 → A, the following are equivalent:

1. σ is a generalized law with exponential bound M .

2. There exists a C∗ algebra B, a ∗-homomorphism ρ : A〈X〉 → B, and a completely positive
map σ : B → A such that σ = σ ◦ ρ. We also have ‖ρ(X)‖ ≤M .

The proof is exactly the same as for the previous theorem. Namely, we let ρ be the left
multiplication action of A〈X〉 on A〈X〉⊗σ A, let B be the C∗ algebra generated by A〈X〉, and
let σ̃(b) = 〈1, b · 1〉σ.

Corollary 1.6.8. Let σ : A〈X〉 → A be a generalized law. Then σ is a law if and only if
σ|A = id.

Proof. Clearly, if σ is a law, then σ|A = id. Conversely, suppose that σ|A = id. Then a direct
computation shows that for a ∈ A, we have 〈a ⊗ 1 − 1 ⊗ a, a ⊗ 1 − 1 ⊗ a〉σ = 0 and therefore
a ⊗ 1 = 1 ⊗ a in A〈X〉 ⊗σ A. This means that the vector ξ = 1 ⊗ 1 is A-central. It is also
a unit vector because σ(1) = 1. It follows that σ[b] = 〈ξ, bξ〉 defines an A-valued expectation
on B = C∗(A〈X〉), and we have σ(f(X)) = σ[f(ρ(X))], so that σ is the law of X under this
expectation.
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Remark 1.6.9. In the proof of Theorem 1.6.5, it is unnecessary to tensor A〈X〉 with A. Indeed,
we could have simply defined the inner product 〈f(X), g(X)〉µ = µ(f(X)∗g(X)) onA〈X〉 rather
than A〈X〉 ⊗ A, and this would already be an A-valued inner product. However, for the more
general setting of Theorem 1.6.7, it is necessary to use A〈X〉 ⊗σ A.

1.7 Problems and Further Reading

Problem 1.1 (States). Prove that a state φ on a C∗-algebra A is a completely positive map
A → C. Show that A⊗φ C is isomorphic as a left A-module to the space L2(A, φ) in the GNS
construction.

Problem 1.2 (Conditional expectations on von Neumann algebras). Suppose that (B, τ) is a
tracial von Neumann algebra and A ⊆ B is a von Neumann subalgebra. Let H = L2(B, τ) and
K = L2(A, τ) ⊆ H.

1. Let PK : H → K be the orthogonal projection. Viewing B and A as subsets of L2(B) and
L2(A), show that PK restricts to a map E : B → A.

2. Show that E is an A-A-bimodule map.

3. Viewing B and A as subsets of B(H), show that E[b] = PKbPK.

4. Show that E is completely positive.

Problem 1.3.

1. Let η : A → A be completely positive and δ > 0. Show that η + δ id is invertible and
(η + δ id)−1 is completely positive.

2. Let σ : A〈X〉 → A be a generalized law. Let η = σ|A and suppose that η − δ id is
completely positive for some δ > 0. Show that there exists an A-valued law µ such that
σ = η ◦ µ.

Problem 1.4. Let X1, . . . , Xn be random variables in the A-valued probability space (B, E).
Define the joint law of X1,. . . ,Xn as a map A〈X1, . . . , Xn〉 → A given by f(X1, . . . , Xn) 7→
E[f(X1, . . . , Xn)]. Show that the A-valued joint law of X1, . . . , Xn is equivalent information
to the Mn(A)-valued law of the diagonal matrix X1 ⊕ · · · ⊕Xn ∈Mn(B).





Chapter 2

Fully Matricial Functions

2.1 Introduction

One of the key tools in (scalar) non-commutative probability is the Cauchy-Stieltjes transform
of a random variable X given by

GX(z) = E[(z −X)−1],

which is an complex-analytic function for z in the upper half-plane and in a neighborhood of∞
(provided that X is bounded). The law of X can be recovered from the power series expansion
of GX at ∞ because

GX(z−1) = E[(z−1 −X)−1] =

∞∑
k=0

zk+1E[Xk],

which is essentially the moment generating function for the law of X.

In this chapter, we describe an A-valued analytic function theory suitable for A-valued non-
commutative probability, and in the next, we analyze the A-valued Cauchy-Stieltjes transform.

It should not be surprising at this point that our notion of analyticity needs to take into
account matrix amplifications. One concrete motivation for this is that, without taking matrix
amplifications, the Cauchy-Stieltjes transform is insufficient to encode the A-valued law of a
random variable X.

One would naively define the Cauchy-Stieltjes transform GX as a function an open subset
of A given by GX(z) = E[(z −X)−1]. Looking at the power series of GX(z−1) at 0, we have

GX(z−1) = E[(z−1 −X)−1] = E[(1− zX)−1z] =

∞∑
k=0

E[(zX)kz].

From this, we can recover all moments of the form E[zXz . . .Xz]. However, to know the law
of X, we would need to consider all moments of the form E[z1Xz2 . . . Xzk]. Of course, for
the Cauchy-Stieltjes transform not to encode the law of X would severely handicap analytic
methods for operator-valued non-commutative probability.

But fortunately this problem is resolved by matrix amplification. We can consider the

sequence of functions G
(n)
X with domain in Mn(A) given by G

(n)
X (z) = E(n)[(z−X(n))−1], where

X(n) is the diagonal matrix with entries given by X. To recover the moment E[z1Xz2 . . . Xzn]

17
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for zj ∈ A, we evaluate (the analytic extension of) G
(n+2)
X (z−1) on the matrix

z =



0 z0 0 . . . 0 0
0 0 z1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 zn
0 0 0 . . . 0 0


and obtain

G
(n+2)
X (z−1) =

∞∑
k=0

E(n+2)[(zX(n+2))kz]

=



0 z0 E[z0Xz1] . . . E[z0Xz1 . . . Xzn−1] E[z0Xz1 . . . Xzn]
0 0 z1 . . . E[z1Xz2 . . . Xzn−1] E[z1Xz2 . . . Xzn]
0 0 0 . . . E[z2Xz3 . . . Xzn−1] E[z2Xz3X . . .Xzn]
...

...
...

. . .
...

...
0 0 0 . . . 0 zn
0 0 0 . . . 0 0


,

where E[z0Xz1 . . . Xzn] can be recovered as the top right entry.
Thus, an analytic function F ought to be a sequence of functions F (n) defined on n × n

matrices over A. But we also need to guarantee that these functions “fit together consistently.”
More precisely, we will require that F respects direct sums and conjugation by invertible scalar
matrices (see Definition 2.2.3).

Remarkably, these algebraic conditions, together with a local boundedness condition which
is uniform in n, are sufficient to imply the existence of local power series expansions for the
function F (n). The terms in these power series expansions are given by multilinear forms,
much like the power series expansion for GX(z−1) is obtained from the multilinear forms
µ(z0Xz1 . . . Xzn). Moreover, just as in the case of GX(z−1), these multilinear forms are com-
puted by evaluating F (n) on certain upper triangular matrices.

The study of such non-commutative or fully matricial functions originated in the 1970’s with
the work of Joseph Taylor [Tay72], [Tay73]. Dan Voiculescu studied fully matricial functions in
the context of the free difference quotient and generalized resolvents [Voi00], [Voi04], [Voi10].
Mihai Popa and Victor Vinnikov clarified the connection between fully matricial function theory
in the abstract and the various analytic transforms associated to non-commutative laws [PV13],
which we will discuss in detail in the later chapters.

We have opted for a self-contained development of the theory of fully matricial functions,
though somewhat restricted in scope. We are indebted to the systematic work of Kaliuzhnyi-
Verbovetskyi and Vinnikov [KVV14], although we have not presented the proofs in exactly the
same way. We write with the analogy to complex analysis always in mind, and with an eye
towards the results of Williams and Anshelevich on the Cauchy-Stieltjes transform [Wil17],
[AW16], which we will discuss in the next chapter. We follow Voiculescu in using the term
“fully matricial” rather than “non-commutative” since it gives a more concrete description of
the definition.

2.2 Fully Matricial Domains and Functions

In order to state the definition, we use the following notation.
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1. We identify Mn(A) with A⊗Mn(C).

2. If z ∈ A(n), then we denote

z(m) = z ⊗ 1m =


z 0 . . . 0 0
0 z . . . 0 0
...

...
. . .

...
...

0 0 . . . z 0
0 0 . . . 0 z

 ∈Mnm(A).

3. If z ∈Mn(A) and w ∈Mm(A), then we denote

z ⊕ w =

[
z 0
0 w

]
∈Mn+m(A).

4. If z ∈Mn(A), then we denote B(n)(z, r) = {w ∈Mn(A) : ‖z − w‖ < r}.

Definition 2.2.1. A fully matricial domain Ω over A is a sequence of sets Ω(n) ⊆ A(n)

satisfying the following conditions.

1. Ω respects direct sums: If z ∈ Ω(n) and w ∈ Ω(m), then z ⊕ w ∈ Ω(n+m).

2. Ω is uniformly open: If z ∈ Ω(n), then there exists r > 0 such that B(nm)(z(m), r) ⊆ Ω(nm)

for all m.

3. Ω is non-empty: At least one Ω(n) is non-empty.

Notation 2.2.2. We denote by M•(A) the fully matricial domain (Mn(A))n∈N.

Definition 2.2.3. Let Ω1 and Ω2 be fully matricial domains over A1 and A2 respectively. A

fully matricial function F : Ω1 → Ω2 is a sequence of functions F (n) : Ω
(n)
1 → Ω

(n)
2 satisfying

the following conditions.

1. F respects intertwinings: Suppose that z ∈ Ω
(n)
1 , w ∈ Ω

(m)
1 , T ∈Mn×m(C). If zT = Tw,

then F (n)(z)S = TF (m)(w).

2. F is uniformly locally bounded: For each x ∈ Ω
(n)
1 , there exist r and M > 0 such that

B(nm)(z(m), r) ⊆ Ω
(nm)
1 and F (nm)(B(nm)(z(m), r)) ⊆ B(nm)(0,M) for all m.

In order to check that a function F is fully matricial, it is often convenient to use the
following equivalent characterization of the intertwining condition.

Lemma 2.2.4. Let Ω1 and Ω2 be fully matricial domains and let F : Ω1 → Ω2 be a sequence
of functions. Then F respects intertwinings if and only if the following conditions hold.

1. F respects direct sums: If z ∈ Ω(n) and w ∈ Ω(m), then F (n+m)(z ⊕ w) = F (n)(z) ⊕
F (m)(w).

2. F respects similarities: Suppose that z ∈ Ω(n), that S ∈ Mn(C) is invertible, and that
SzS−1 ∈ Ω(n). Then F (n)(SzS−1) = SF (n)(z)S−1.
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Proof. First, assume that F respects intertwinings. To prove (1), fix z ∈ Ω(n) and w ∈ Ω(m).
Then we have the block matrix equations

[
1 0

] [z 0
0 w

]
= z

[
1 0

]
[
0 1

] [z 0
0 w

]
= w

[
0 1

]
Because F respects intertwinings, we have[

1 0
]
F (n+m)(z ⊕ w) = F (n)(z)

[
1 0

][
0 1

]
F (n+m)(z ⊕ w) = F (m)(w)

[
0 1

]
,

which together imply that

F (n+m)(z ⊕ w) =

[
F (n)(z) 0

0 F (m)(w)

]
= F (n)(z)⊕ F (m)(w).

Next, fix z and S as in (2). Let w = SzS−1. Then Sz = wS and hence SF (n)(z) =
F (n)(w)S, which means that F (n)(SzS−1) = SF (n)(z)S−1.

Conversely, suppose that (1) and (2) hold and consider an intertwining zT = Tw where

z ∈ Ω
(n)
1 , w ∈ Ω

(m)
1 , T ∈Mn×m(C). Then observe that[

z 0
0 w

] [
1 T
0 1

]
=

[
1 T
0 1

] [
z 0
0 w

]
,

and observe that

S =

[
1 T
0 1

]
is invertible. Hence, S(z ⊕ w)S−1 = z ⊕ w and therefore by assumptions (1) and (2), we have
S(F (n)(z)⊕ F (m)(w))S−1 = F (n)(z)⊕ F (m)(w). In other words,[

F (n)(z) 0
0 F (m)(w)

] [
1 T
0 1

]
=

[
1 T
0 1

] [
F (n)(z) 0

0 F (m)(w)

]
,

and hence, looking at the top right block, F (n)(z)T = TF (m)(w).

In order to reduce the number of superscripts cluttering up our paper, we introduce the
following notation.

1. For F : Ω1 → Ω2 and z ∈ Ω
(n)
1 , we will usually write F (z) rather than F (n)(z), and the

context will make clear the size of the matrix z.

2. If Ω1 and Ω2 are fully matricial domains, then we write Ω1 ⊆ Ω2 to mean that Ω
(n)
1 ⊆ Ω

(n)
2

for every n.

3. We write z ∈ Ω to mean that z ∈ Ω(n) for some n.

4. For Γ ⊆ Ω1 and F : Ω1 → Ω2, we denote by F (Γ) the sequence of sets F (Γ)(n) =
F (n)(Γ(n)). We define F−1(Γ) for Γ ⊆ Ω2 similarly.
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5. For z ∈Mn(A), we denote by B(z, r) the fully matricial domain

B(k)(z, r) =

{
B(nm)(z(m), r), k = nm

∅, otherwise.

In this notation, the uniform openness condition of Definition 2.2.1 states that for every z ∈ Ω,
there exists r > 0 such that B(z, r) ⊆ Ω. Moreover, F : Ω1 → Ω2 is uniformly locally
bounded as in Definition 2.2.3 if and only if for every z ∈ Ω1, there exist R and M such that
F (B(z,R)) ⊆ B(0,M).

2.3 Difference-Differential Calculus

Definition 2.3.1. Let F : Ω1 → Ω2 be fully matricial where Ωj is fully matricial domain

over Aj . Suppose that z0 ∈ Ω
(n0)
1 , . . . , zk ∈ Ω

(nk)
1 , suppose that w1 ∈ Mn0×n1(A), . . . ,

wk ∈Mnk−1×nk(A1), and suppose that the block matrix

X :=



z0 w1 0 . . . 0 0
0 z1 w2 . . . 0 0
0 0 z2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . zk−1 wk
0 0 0 . . . 0 zk


is in Ω

(n0+···+nk)
1 . Then we define

∆kF (z0, . . . , zk)[w1, . . . , wk]

as the upper right n0 × nk block of F (Z).

Lemma 2.3.2. Let z0, . . . , zk and w1, . . . , wk and Z be as above, and assume that each of
the submatrices

Zi,j :=


zi wi+1 . . . 0 0
0 zi+1 . . . 0 0
...

...
. . .

...
...

0 0 . . . zj−1 wj
0 0 . . . 0 zj


is in the domain of F for each i < j. Then we have

F (Z) =


F (z0) ∆F (z0, z1)[w1] ∆2F (z0, z1, z2)[w1, w2] . . . ∆kF (z0, . . . , zk)[w1, . . . , wk]

0 F (z1) ∆F (z1, z2)[w2] . . . ∆k−1F (z1, . . . , zk)[w2, . . . , wk]
0 0 F (z2) . . . ∆k−2F (z2, . . . , zk)[w3, . . . , wk]
...

...
...

. . .
...

0 0 0 . . . F (zk)


(2.3.1)

Proof. We proceed by induction on k with the base case k = 0 being trivial. Let k ≥ 1. Let nj
be the size of the matrix xj and let Ni,j = ni + · · ·+ nj . Then we have

Z

[
1N0,k−1×N0,k−1

0nk×N0,k−1

]
=

[
1N0,k−1×N0,k−1

0nk×N0,k−1

]
Z0,k−1
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and therefore

F (Z)

[
1N0,k−1×N0,k−1

0nk×N0,k−1

]
=

[
1N0,k−1×N0,k−1

0nk×N0,k−1

]
F (Z0,k−1).

From this relation together with the induction hypothesis applied to F (Z0,k−1) we deduce that

F (Z) =


F (z0) ∆F (z0, z1)[w1] . . . ∆k−1F (z0, . . . , zk−1)[w1, . . . , wk−1]

0 F (z1) . . . ∆k−2F (z1, . . . , zk−1)[w2, . . . , wk−1]
...

...
. . .

...
...

0 0 . . . 0 ∗

 .
In other words, (2.3.1) is verified except in the last nk columns. Similarly, by considering the
intertwining [

0N1,k×n0
1N1,k×N1,k

]
Z = Z1,k

[
0N1,k×n0

1N1,k×N1,k

]
and applying the induction hypothesis to F (Z1,k), we can verify (2.3.1) except in the first nk
rows. It remains to check (2.3.1) in the top right n0 × nk block; but this holds by definition of
∆kF .

Lemma 2.3.3. Suppose that z0 ∈ Ω
(n0)
1 , . . . , zk ∈ Ω

(nk)
1 , suppose that w1 ∈ Mn0×n1

(A), . . . ,
wk ∈Mnk−1×nk(A), and let ζ1, . . . , ζk ∈ C. Then we have

∆kF (z0, . . . , zk)[ζ1w1, . . . , ζkwk] = ζ1 . . . ζkF (z0, . . . , zk)[w1, . . . , wk]

provided that both quantities are defined under Definition 2.3.1.

Proof. We consider the intertwining
z0 ζ1w1 . . . 0 0
0 z1 . . . 0 0
...

...
. . .

...
...

0 0 . . . zk−1 ζkwk
0 0 . . . 0 zk




ζ1 . . . ζk 0 . . . 0 0

0 ζ2 . . . ζk . . . 0 0
...

...
. . .

...
...

0 0 . . . ζk 0
0 0 . . . 0 1



=


ζ1 . . . ζk 0 . . . 0 0

0 ζ2 . . . ζk . . . 0 0
...

...
. . .

...
...

0 0 . . . ζk 0
0 0 . . . 0 1




z0 w1 . . . 0 0
0 z1 . . . 0 0
...

...
. . .

...
...

0 0 . . . zk−1 wk
0 0 . . . 0 zk

 ,
apply the function F , and then examine the top right corner.

Definition 2.3.4. If zj ∈ Ω
(nj)
1 for j = 0, . . . , k, then we extend the definition of ∆kF (z0, . . . , zk)[w1, . . . , wk]

to arbitrary values of w1 ∈Mn0×n1
(A), . . . , wk ∈Mnk−1×nk(A) by setting

F (z0, . . . , zk)[w1, . . . , wk] =
1

ζ1 . . . ζk
∆kF (z0, . . . , zk)[ζ1w1, . . . , ζkwk],

where ζ1, . . . , ζk ∈ C \ {0} are chosen to be sufficiently small that
z0 ζ1w1 . . . 0 0
0 z1 . . . 0 0
...

...
. . .

...
...

0 0 . . . zk−1 ζkwk
0 0 . . . 0 zk

 ∈ Ω
(n0+···+nk)
1 .
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Such a choice of ζ1, . . . , ζk is possible because Ω
(n0+···+nk)
1 is open. Lemma 2.3.3 guarantees

that this definition of F (z0, . . . , zk)[w1, . . . , wk] is independent of the choice of ζ1, . . . , ζk and
is consistent with the earlier Definition 2.3.1.

Lemma 2.3.5. ∆kF (z0, . . . , zk)[w1, . . . , wk] is multilinear in w1,. . . ,wk.

Proof. We have already shown that ∆kF (z0, . . . , zk) behaves correctly when we multiply one
of the wj ’s by a scalar, so it remains to show that ∆kF (z0, . . . , zk)[w1, . . . , wk] is additive in
each variable yj . First, consider the case k = 1 in which we must show that

∆F (z0, z1)[w + w′] = ∆F (z0, z1)[w] + ∆F (z0, z1)[w′].

Choose ζ ∈ C \ {0} sufficiently small that the matrices

[
z0 ζ(w + w′)
0 z1

]
,

[
z0 ζw
0 z1

]
,

[
z0 ζw′

0 z1

]
,

z0 0 ζw
0 z0 ζw′

0 0 z1


are all in the domain of F . From the intertwining[

1 0 0
0 0 1

]z0 0 ζw
0 z0 ζw′

0 0 z1

 =

[
z0 ζw
0 z1

] [
1 0 0
0 0 1

]
,

we deduce that[
1 0 0
0 0 1

]
F

z0 0 ζw
0 z0 ζw′

0 0 z1

 =

[
F (z0) ζ∆F (z0, z1)[w]

0 F (z1)

] [
1 0 0
0 0 1

]
.

Similarly, [
0 1 0
0 0 1

]
F

z0 0 ζw
0 z0 ζw′

0 0 z1

 =

[
F (z0) ζ∆F (z0, z1)[w′]

0 F (z1)

] [
0 1 0
0 0 1

]
,

and thus altogether,

F

z0 0 ζw
0 z0 ζw′

0 0 z1

 =

F (z0) 0 ζ∆F (z0, z1)[w]
0 z0 ζ∆F (z0, z1)[w′]
0 0 z1

 .
Finally, we use the intertwining[

z0 ζ(w + w′)
0 z1

] [
1 1 0
0 0 1

]
=

[
1 1 0
0 0 1

]z0 0 ζw
0 z0 ζw′

0 0 z1


to deduce that[

F (z0) ζ∆F (z0, z1)[w + w′]
0 F (z1)

] [
1 1 0
0 0 1

]
=

[
1 1 0
0 0 1

]F (z0) 0 ζ∆F (z0, z1)[w]
0 F (z0) ζ∆F (z0, z1)[w′]
0 0 F (z1)

 ,
which shows that ζ∆F (z0, z1)[w + w′] = ζ∆F (z0, z1)[w] + ζ∆F (z0, z1)[w′] as desired.
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The argument in the general case is similar. To show linearity of F (z0, . . . , zk)[w1, . . . , wn]
in wj , we consider replacing wj by wj + w′j . The block 3× 3 matrix used above is replaced by

z0 ζ1w1 . . . 0 0 0 0 . . . 0 0
0 z1 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . zj−2 ζj−1wj−1 0 0 . . . 0 0
0 0 . . . 0 zj−1 0 ζjwj . . . 0 0
0 0 . . . 0 0 zj−1 ζjw

′
j . . . 0 0

0 0 . . . 0 0 0 xj . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . zk−1 ζkwk
0 0 . . . 0 0 0 0 . . . 0 zk


and the intertwiners are replaced by

1n0+···+nj−1 ⊕
[
α β 0
0 0 1

]
⊕ 1nj+1+···+nk

where α, β = 0, 1 and where nj is the size of the matrix zjj.

2.4 Taylor-Taylor Expansion

We have defined the derivative operators ∆kF using the matricial structure of F . Now we will
show that these same operators ∆kF describe the differential and analytic properties of F , and
in fact that F has local power series expansions in terms of ∆kF . We begin with the finite
Taylor-Taylor expansion. This formula is named for Brook Taylor, who invented the original
Taylor expansion, and Joseph L. Taylor, who pioneered the theory of non-commutative (fully
matricial) functions.

Lemma 2.4.1 (Taylor-Taylor Formula). Let F : Ω1 → Ω2 be a fully matricial function. Let

z0 ∈ Ω
(n)
1 and m > 1 and suppose that B(nm)(z

(m)
0 , r) ⊆ Ω

(nm)
1 . If z ∈ B(n)

r/
√

2
(z0), then

F (z) =

m−2∑
k=0

∆kF (z∗, . . . , z∗)[z − z∗, . . . , z − z∗] + ∆m−1F (z, z∗, . . . , z∗)[z − z∗, . . . , z − z∗],

where the k = 0 term in the sum is to be interpreted as F (z∗).

Proof. Observe that the m×m block matrix

Z =



z z − z∗ 0 0 . . . 0 0
0 z∗ z − z∗ 0 . . . 0 0
0 0 z∗ z − z∗ . . . 0 0
0 0 0 z∗ . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . z∗ z − z∗
0 0 0 0 . . . 0 z∗


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is in B(nm)(z
(m)
∗ , r) ⊆ Ω(nm) provided that ‖z− z∗‖ < r/

√
2. We have the intertwining relation[

1 1 . . . 1
]
Z = z

[
1 1 . . . 1

]
,

and therefore, [
1 1 . . . 1

]
F (Z) = F (z)

[
1 1 . . . 1

]
.

Looking at the rightmost block of
[
1 1 . . . 1

]
F (nm)(Z) and applying the definition of ∆kF ,

we have

F (z∗)+

m−1∑
k=1

∆kF (z∗, . . . , z∗)[z−z∗, . . . , z−z∗]+∆mF (z, z∗, . . . , z∗)[z−z∗, . . . , z−z∗] = F (n)(z).

Next, we give a non-commutative analog of the Cauchy estimates from complex analysis,
which will help us prove convergence of the infinite Taylor-Taylor series. In the following,
‖∆kF (z0, . . . , zk)‖ denotes the norm of ∆kF (z0, . . . , zk) as a multilinear form between Banach
spaces, that is,

‖∆kF (z0, . . . , zk)‖ = sup
‖wj‖≤1

∥∥∆kF (z0, . . . , zk)[w1, . . . , wk]
∥∥.

Lemma 2.4.2. Let F : Ω1 → Ω2 be fully matricial. Let Z = w0 ⊕ · · · ⊕ wk where zj ∈ Ω
(nj)
1

and let N = n0 + · · ·+nk. Suppose that B(N)(Z,R) ⊆ Ω
(N)
1 and F (B(N)(Z,R)) ⊆ B(N)(0,M).

Then

‖∆kF (z0, . . . , zk)‖ ≤ M

Rk
for k ≥ 1. (2.4.1)

Proof. Suppose that ‖w1‖ ≤ 1, . . . , ‖wk‖ ≤ 1. For r < R, we have

W :=


z0 rw1 . . . 0 0
0 z1 . . . 0 0
...

...
. . .

...
...

0 0 . . . zk−1 rwk
0 0 . . . 0 zk

 ∈ B(N)(Z,R),

and hence ‖F (W )− F (Z)‖ < M . Looking at the top right block of F (W )− F (Z), we obtain

‖F (z0, . . . , zk)[rw1, . . . , rwk]‖ ≤M.

Because this holds whenever r < R and ‖wj‖ ≤ 1, we have proven (2.4.1).

Lemma 2.4.3. Let F : Ω1 → Ω2 be fully matricial. Let z∗ ∈ Ω
(n)
1 , and suppose B(z∗, R) ⊆ Ω1

and F (B(z∗, R)) ⊆ B(0,M). Then for z ∈ B(n)(z∗, R), we have

F (z) =

∞∑
k=0

∆kF (z∗, . . . , z∗)[z − z∗, . . . , z − z∗]. (2.4.2)
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Proof. It follows from Lemma 2.4.2 that the power series on the right hand side of (2.4.2)
converges when ‖y − x‖ < R. It remains to show that the sum of the series is F (y). If we
assume that ‖z − z∗‖ < R/

√
2, then by Lemma 2.4.1,

F (z) =

m−1∑
k=0

∆kF (z∗, . . . , z∗)[z − z∗, . . . , z − z∗] + ∆mF (z, z∗, . . . , z∗)[z − z∗, . . . , z − z∗].

Now if ‖z−z∗‖ ≤ R/2, then we have B(z∗, R/2) ⊆ B(z∗, R) and hence F (B(z,R/2)) ⊆ B(0,M).
Hence, by Lemma 2.4.2,

‖∆mF (z, z∗, . . . , z∗)[z − z∗, . . . , z − z∗]‖ ≤
2M‖z − z∗‖m

(R/2)m

which vanishes as m→∞. Therefore, (2.4.2) holds when ‖z − z∗‖ < R/2.

To extend (2.4.2) to y ∈ B(n)(z∗, R), we use complex analysis. Fix z ∈ B(n)(z∗, R). Note
that for any state φ on A(n) and for |ζ| < R/2‖z − z∗‖, the function

g(ζ) = φ ◦ F (z + ζ(z − z∗)) =

∞∑
k=0

ζkφ ◦∆kF (z∗, . . . , z∗)[z − z∗, . . . , z − z∗]

is a scalar-valued analytic function. Now because F has also has a local power series expansion
centered at z+ ζ(z−z∗) whenever z∗+ ζ(z−z∗) is in the domain of F , we see that g is actually
analytic for |ζ| < R/‖z − z∗‖. It follows that the power series expansion for g centered at 0
converges to g when |ζ| < R/‖z − z∗‖. Thus, taking ζ = 1, we obtain

φ ◦ F (z) =

∞∑
k=0

φ ◦∆kF (z∗, . . . , z∗)[z − z∗, . . . , z − z∗],

and because this holds for arbitrary states φ, we have proved (2.4.2).

2.5 Matricial Properties of ∆kF

We will now describe how ∆kF (z0, . . . , zk) behaves when we replace one of the zj ’s with a direct

sum. As a consequence, we will evaluate ∆kF (z
(n)
0 , . . . , z

(n)
0 ) as a type of matrix amplification

of ∆kF (z0, . . . , z0), and hence derive a Taylor-Taylor expansion around a point z which will
hold not only on a ball B(n)(z0, r), but on a fully matricial ball B(z0, r). As a first step, we
describe how the direct sum property of F carries over to ∆kF .

Lemma 2.5.1. For j = 1, . . . , k − 1, we have

∆kF (z0, . . . , zj−1, zj ⊕ z′j , zj+1, . . . , zk)

[
w1, . . . , wj−1,

[
wj , w

′
j

]
,

[
wj+1

w′j+1

]
, wj+2, . . . , wk

]
= ∆kF (z0, . . . , zj−1, zj , zj+1, . . . , zk) [w1, . . . , wj−1, wj , wj+1, wj+2, . . . , wk]

+ ∆kF (z0, . . . , zj−1, z
′
j , zj+1, . . . , zk)

[
w1, . . . , wj−1, w

′
j , w

′
j+1, wj+2, . . . , wk

]
.

In the endpoint case j = 0, the same holds with the terms wj and w′j left out, and the endpoint
case j = k, the same holds with the wj+1 and w′j+1 left out.
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Proof. To simplify notation, first assume k = 2 and j = 1. Using the intertwining1 0 0 0
0 1 0 0
0 0 0 1



z0 ζ1w1 0 0
0 z1 0 ζ2w2

0 0 z′1 ζ2w
′
2

0 0 0 z2

 =

z0 ζ1w1 0
0 z1 ζ2w2

0 0 z2

1 0 0 0
0 1 0 0
0 0 0 1

 ,
we deduce that

∆2F (z0, z1 ⊕ z′1, z2)

[[
w1 0

]
,

[
w2

w′2

]]
= ∆2F (z0, z1, z2)[w1, w2].

A similar argument shows that

∆2F (z0, z1 ⊕ z′1, z2)

[[
0 w′1

]
,

[
w2

w′2

]]
= ∆2F (z0, z

′
1, z2)[w′1, w

′
2].

Then by linearity of ∆2F (z0, z1 ⊕ z′1, z2) in the first w coordinate, we get

∆2F (z0, z1 ⊕ z′1, z2)

[[
w1 w′1

]
,

[
w2

w′2

]]
= ∆2F (z0, z1, z2)[w1, w2] + ∆2F (z0, z

′
1, z2)[w′1, w

′
2].

The argument for the general case when 1 ≤ j ≤ k−1 is the same except that we must augment
our intertwining matrix by taking the direct sum with copies of the identity at the top left and
bottom right (compare the general case of Lemma 2.3.5). The endpoint cases have a similar
but simpler argument.

Now we generalize the previous lemma to replace each zj by an arbitrary direct sum.

Lemma 2.5.2. Let Zj be the Rj ×Rj block diagonal matrix

Zj = zj,1 ⊕ · · · ⊕ zj,Rj ,

where the block zj,r is nj,r ×nj,r and j runs from 0 to k. Let Wj be an Rj−1×Rj block matrix
where the (r, s) block wj,r,s has dimensions nj−1,r × nj,s. Then ∆kF (Z0, . . . , Zk)[W1, . . . ,Wk]
is an R0 ×Rk block matrix where the (r, s) block is given by∑

r1,...,rk−1

∆kF (z0,r, z1,r1 , . . . , zk−1,rk−1
, zk,s)[w1,r,r1 , w2,r1,r2 , . . . , wk−1,rk−2,rk−1

, wk,rk−1,s].

Remark 2.5.3. In the last lemma, the conditions on the dimensions are such that it would make
sense to multiply the matrices Z0W1Z1 . . .WkZk together. The lemma asserts that block entries
of ∆kF (Z0, . . . , Zk)[W1, . . . ,Wk] is computed from ∆kF evaluated on the zj,r’s and wj,r,s’s in
the same way as we would evaluate the matrix product Z0W1Z1 . . .WkZk in terms of products
of the zj,r’s and wj,r,s’s.

Proof of Lemma 2.5.2. We fix k and proceed by induction on the total number of direct sum-
mands of the Zj ’s. If some Zjj has more than one direct summand, we can break Zj into the
direct sum of zj,1 ⊕ . . . zj,Rj−1 and zj,Rj and then apply Lemma 2.5.1, and thus reduce to an
earlier stage of the induction.

Now restricting our attention to the case where zj,1 = · · · = zj,Rj , we will write ∆kF (z
(m0)
0 , . . . , z

(mk)
k )

as a matrix amplification of ∆kF (z0, . . . , zk), and in particular, we will be able to evaluate the

derivative ∆kF (z
(m)
∗ , . . . , z

(m)
∗ ) used in the Taylor-Taylor expansion.
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Definition 2.5.4. Let V1, . . . , Vk and V be vector spaces and let Λ : V1 × · · · × Vk → V be a
multilinear form. Choose indices m0, . . . , mk. We then define the multilinear form

Λ(m0,...,mk) : Mm0×m1(V1)× · · · ×Mmk−1×mk(Vk)→Mm0×mk(V)

by

[Λ(m0,...,mk)(v1, . . . , vk)]i,j =
∑

i=i0,i1,...,ik−1,ik=j

Λ[(v1)i0,i1 , . . . , (vk)mk−1,mk ]

We will sometimes denote the matrix amplification Λ(m0,...,mk) simply by Λ# when we do not
wish to specify the indices m0, . . . , mk.

In particular, let F : Ω1 → Ω2, where Ωj is a fully matricial domain over Aj . Let zj ∈ Ω
(nj)
1

for j = 0, . . . , k. Then we have a multilinear form

∆kF (z0, . . . , zk) : Mn0×nk(A1)× · · · ×Mnk−1×nj (A1)→Mn0×nk(A2).

If we choose indicesm0, . . . , mk and identifyMmj−1×mj (Mnj−1×nj (A1)) withMnj−1mj−1×njmj (A1),
then we have by Lemma 2.5.2 that

∆kF (z
(m0)
0 , . . . , z

(mk)
k ) = ∆kF (z0, . . . , zk)(m0,...,mk).

We now state a version of the Cauchy estimates and Taylor-Taylor expansion that take
into account matrix amplification, beginning with a norm for multilinear forms which is stable
under matrix amplification.

Definition 2.5.5. Recall that the norm of a multilinear form onMn0×n1(A)×· · ·×Mnk−1×nk(A)→
Mn0×nk(A) is given by

‖Λ‖ = sup
‖w1‖,...,‖wk‖≤1

‖Λ[w1, . . . , wk]‖.

so we define the completely bounded norm as

‖Λ‖# = sup
m0,...,mk

‖Λ(m0,...,mk)‖.

We say that Λ is completely bounded if ‖Λ‖# < +∞.

The next corollaries follow immediately from Lemma 2.5.2

Corollary 2.5.6. We have ∆kF (z
(m0)
∗ , . . . , z

(mk)
∗ ) = [∆kF (z∗, . . . , z∗)]

(m0,...,mk).

Corollary 2.5.7. Suppose that F : Ω1 → Ω2 is fully matricial and B(z∗, R) ⊆ Ω1 and
F (B(z∗, R)) ⊆ B(0,M). Then ‖∆kF (z∗, . . . , z∗)‖# ≤M/Rk.

Proof. Note that B(z
(m0)
∗ ⊕ · · · ⊕ z(mk)

∗ , R) ⊆ B(z∗, R) ⊆ Ω1, so it follows from Lemma 2.4.2
that

‖∆kF (z
(m0)
∗ , . . . , z

(mk)
∗ )‖ ≤ M

Rk
.

Corollary 2.5.8. Let F : Ω1 → Ω2, let z∗ ∈ Ω
(n)
1 , and suppose that F (B(z∗, R)) ⊆ B(0,M).

Then for z ∈ B(nm)(z
(m)
∗ , R), we have

F (z) =

∞∑
k=0

[∆kF (z∗, . . . , z∗)]
(m,...,m)(z − z(m)

∗ , . . . , z − z(m)
∗ ).
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This amplified power series expansion will allow us to compute and to estimate the deriva-
tives of F at points in B(z∗, R).

Proposition 2.5.9. Suppose that F : Ω1 → Ω2 is fully matricial, z∗ ∈ Ω(n) and B(z∗, R) ⊆ Ω1

and F (B(z∗, R)) ⊆ B(0,M). Let z0, . . . , zk be points with zj ∈ B(nmj)(0, R). Then we have

∆kF (z
(m0)
∗ + z0, . . . , z

(mk)
∗ + zk)[w1, . . . , wk]

=
∑

m0,...,mk≥0

∆`0+···+`k+kF (z∗, . . . , z∗)[z0, . . . , z0︸ ︷︷ ︸
`0

, w1, z1, . . . , z1︸ ︷︷ ︸
`1

, . . . , wk, zk, . . . , zk︸ ︷︷ ︸
`k

]. (2.5.1)

In particular,

‖∆kF (z
(m0)
∗ + z0, . . . , z

(mk)
∗ + zk)‖# ≤

M

(R− ‖z0‖) . . . (R− ‖zk‖)
(2.5.2)

and

‖∆kF (z
(m0)
∗ + z0, . . . , z

(mk)
∗ + zk)−∆kF (z

(m0)
∗ , . . . , z

(mk)
∗ )‖# ≤

M
∑k
j=1‖zj‖

(R− ‖z0‖) . . . (R− ‖zk‖)
.

(2.5.3)

Proof. Note that to compute the derivatives, we may restrict our attention F (mn) for m ∈ N.

Since F (mn)(z − z(m)
∗ ) is defined on B(0(n), R), we may assume without loss of generality that

z∗ = 0(n). Furthermore, we denote

Λk = ∆kF (z∗, . . . , z
∗),

so that

F (z) =

∞∑
k=0

Λ#
k (z, . . . , z) for z ∈ B(0(n), R).

Before performing the computation, we first show that the series converges absolutely and
estimate it. Observe that

∑
`0,...,`k≥0

∥∥∥∥∥∥Λ`0+···+`k+k[z0, . . . , z0︸ ︷︷ ︸
`0

, w1, z1, . . . , z1︸ ︷︷ ︸
`1

, . . . , wk, zk, . . . , zk︸ ︷︷ ︸
`k

]

∥∥∥∥∥∥
≤

∑
`0,...,`k≥0

M

R`0+···+`k+k
‖z0‖`0 . . . ‖zk‖`k‖w1‖ . . . ‖wk‖

=
M‖w1‖ . . . ‖wk‖

(R− ‖z0‖) . . . (R− ‖zk‖)
,

where the last equality follows from summing the geometric series.
Now let us show that sum converges to ∆kF (z0, . . . , zk)[w1, . . . , wk]. Consider the block

upper triangular matrix Z with the entries z0, . . . , zk on the diagonal, the entries w1, . . . , wk
just above the diagonal, and zeroes elsewhere. By rescaling, assume that w1, . . . , wk are small
enough that ‖Z‖ < R. Recall that ∆kF (z0, . . . , zk)[w1, . . . , wk] is the upper right corner of

F (Z). The upper right block of Λ#
` (Z, . . . , Z) is given by∑

1=i0,i1,...,i`=k+1

Λ#
` (Zi0,i1 , . . . , Zi`−1,i`).
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Because Z is block upper triangular with entries on the diagonal and directly above it, the only
nonzero terms are of the form

Λ#
` (z0, . . . , z0︸ ︷︷ ︸

m0

, w1, z1, . . . , z1︸ ︷︷ ︸
m1

, . . . , wk, zk, . . . , zk︸ ︷︷ ︸
mk

).

Thus, we have

∆kF (z0, . . . , zk)[w1, . . . , wk] =

∞∑
`=0

 ∑
m0,...,mk≥0

m0+···+mk+k=`

Λ#
` (z0, . . . , z0︸ ︷︷ ︸

m0

, w1, z1, . . . , z1︸ ︷︷ ︸
m1

, . . . , wk, zk, . . . , zk︸ ︷︷ ︸
mk

)

 ,

which is exactly (2.5.1) in the case z∗ = 0(n).

We already showed that when z∗ = 0(n),

‖∆kF (z0, . . . , zk)‖ ≤ M

(R− ‖z0‖) . . . (R− ‖zk‖)
.

Because the same reasoning applies to ∆k(z
(m0)
0 , . . . , z

(mk)
k ) and yields the same estimate, we

have bounded ‖∆kF (z0, . . . , zk)‖# and proven (2.5.2).

To prove (2.5.3), observe that

‖∆kF (z0, . . . , zk)−∆kF (0(nm0), . . . , 0(nmk))‖

≤
∑

`0,...,`k≥0
`0+···+`k≥1

∥∥∥∥∥∥Λ`0+···+`k+k[z0, . . . , z0︸ ︷︷ ︸
`0

, w1, z1, . . . , z1︸ ︷︷ ︸
`1

, . . . , wk, zk, . . . , zk︸ ︷︷ ︸
`k

]

∥∥∥∥∥∥
≤

∑
`0,...,`k≥0

M

R`0+···+`k+k
‖z0‖`0 . . . ‖zk‖`k‖w1‖ . . . ‖wk‖

= M‖w1‖ . . . ‖wk‖
(

1

(R− ‖z0‖) . . . (R− ‖zk‖)
− 1

Rk

)
,

≤
∑k
j=0‖zj‖

(R− ‖z0‖) . . . (R− ‖zk‖)
.

The same argument also applies to the matrix amplifications of ∆kF (z0, . . . , zk) and hence we
have bounded ∆kF (z0, . . . , zk)−∆kF (0(nm0), . . . , 0nmk) in ‖·‖#.

Corollary 2.5.10. F (z) and ∆kF (z, . . . , z) are uniformly locally Lipschitz functions z with
respect to ‖·‖#. That is, for every z∗, there exists r > 0 such that F (z) and ∆kF (z, . . . , z) are
Lipschitz on B(n)(z∗, r), with Lipschitz constants independent of n.

Furthermore, the following lemma shows the multlinear forms in this amplified power series
expansion are unique. That is, any other sequence of multilinear forms Λk which satisfies the
equation in Corollary 2.5.8 must be equal to ∆kF (z0, . . . , z0). This lemma justifies many ways
of computing the derivatives of a fully matricial function F . As long as we obtain a power
series that converges to F and the manipulation works for every size of matrices, then we must
have the correct answer. For applications, see Problems 2.6 and 2.7 below.
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Lemma 2.5.11. Let F : Ω1 → Ω2 and z∗ ∈ Ω
(n)
1 . Let Λk : Mn(A1)k →Mn(A2) be a sequence

of multilinear forms. If for some r > 0, have

F (z) =

∞∑
k=0

Λ
(m,...,m)
k (z − z(m)

∗ , . . . , z − z(m)
∗ )

for z ∈ B(m)(z∗, r) for all m, then Λk = ∆kF (z∗, . . . , z∗). In fact, we need only assume that

the expansion holds when z− z(m)
∗ is strictly upper triangular and in B(nm)(z

(m)
∗ , rm) for some

rm > 0.

Proof. Fix k. Fix w1, . . . , wk ∈Mn(A) and let ζ1, . . . , ζk be small scalars. Let

W =



0 ζ1w1 0 . . . 0 0
0 0 ζ2w2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 ζkwk
0 0 0 . . . 0 0


]

Then we observe that

F (z
(k+1)
∗ +W ) =



0 Λ1(ζ1w1) Λ2(ζ1w1, ζ2w2) . . . Λk(ζ1w1, . . . , ζkwk)
0 0 Λ1(ζ2w2) . . . Λk−1(ζ2w2, . . . , ζkwk)
0 0 0 . . . Λk−2(ζ3w3, . . . , ζkwk)
...

...
...

. . .
...

0 0 0 . . .Λ1(ζkwk)
0 0 0 . . . 0 0


],

and by examining the upper right block, it follows that

∆kF (z∗, . . . , z∗)(ζ1w1, . . . , ζkwk) = Λk(ζ1w1, . . . , ζkwk).

Thus, ∆kF (z∗, . . . , z∗) = Λk as desired.

2.6 Examples

Series of Multilinear Forms

Our first example is closely related to the material from the last section on the matrix amplifica-
tions of multilinear forms. We will characterize the fully matricial functions on the ball B(0, R)
(where 0 is the 1 × 1 zero matrix) as convergent series of multilinear forms. We remark that
the corresponding notion of formal power series of multilinear forms was studied by Dykema
[Dyk07].

Proposition 2.6.1. Suppose that Λk : Ak1 → A2 is a completely bounded multilinear form and

that lim supk→∞‖Λk‖
1/k
# ≤ 1/R. Then

F (n)(z) =

∞∑
k=0

Λ
(n)
k [z, . . . , z]
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is a fully matricial function on B(0, R) which satisfies ∆kF (0, . . . , 0) = Λk. Moreover, F is
uniformly bounded on B(0, r) for each r < R. Conversely, if F is a fully matricial function on
B(0, R) which is uniformly bounded on B(0, r) for each r < R, then F can be written in this
form, where Λk = ∆kF (0, . . . , 0).

Proof. Let Λk be given with lim supk→∞‖Λk‖
1/k
# ≤ 1/R. Choose r < R and let r < r′ < R.

Then for k greater than or equal to some N , we have ‖Λk‖ ≤ 1/r′. This implies that for
‖z‖ ≤ r, we have

∞∑
k=0

‖Λ(n,...,n)
k (z, . . . , z)‖ ≤

N−1∑
k=0

‖Λk‖#rk +

∞∑
k=N

( r
r′

)k
< +∞.

This shows that the series converges uniformly on B(0, r) and defines a function F which is
bounded on B(0, r) for each r < R. To show that F is fully matricial, suppose zT = Tw
where z ∈ B(n)(0, R) and w ∈ B(m)(0, R) and T ∈ Mn×m(C). A direct computation from the
definition of the matrix amplification of multilinear forms shows that

Λ#
k (z, . . . , z)T = Λ#

k (z, . . . , z, zT ) = Λ#
k (z, . . . , z, Tw) = Λ#

k (z, . . . , z, zT, w) = . . .

· · · = Λ#
k (Tw,w, . . . , w) = TΛ#

k (w, . . . , w).

Therefore, F (z)T = TF (w) as desired.

Now consider the converse direction. Suppose that ‖F (z)‖ ≤ Mr for ‖z‖ ≤ r < R. By

Corollary 2.5.7, we have ‖Λk‖# ≤Mr/r
k, so that lim supk→∞‖∆kF (0, . . . , 0)‖1/k# ≤ 1/r. Thus

holds for all r < R, and so lim supk→∞‖∆kF (0, . . . , 0)‖1/k# ≤ 1/R. Moreover, by Corollary

2.5.8, F (z) is given as the sum of ∆kF (0, . . . , 0)#[z, . . . , z].

Non-Commutative Polynomials

In particular, if F (X) = a0Xa1 . . . Xak is a monomial in A〈X〉, then there is a correpsonding
multilinear form

Λ : (z1, . . . , zk) 7→ a0z1a1 . . . zkak.

Note that

Λ(n)(z1, . . . , zk) = a
(n)
0 z1a

(n)
1 . . . zka

(n)
k .

Thus, ‖Λ(n)‖ ≤ ‖a0‖ . . . ‖ak‖, so that Λ is completely bounded. Thus, we can define a fully
matricial function by

F (n)(z) = Λ(n)(z, . . . , z) = a
(n)
0 za

(n)
1 . . . za

(n)
k .

By linearity, for every non-commutative polynomial F (X) ∈ A〈X〉, the function F (z) is fully
matricial on M•(A). Moreover, the derivatives ∆kF are computed as in Lemma 2.5.9. For
example, if F (z) = a0za1 . . . za` and if z0,. . . , z` ∈ A, we have

∆kF (z0, . . . , zk)[w1, . . . , wk] =∑
1≤`1<`2<···<`k≤`

(a0z0a1 . . . z0a`1−1)w1(a`1z1a`1+1 . . . z1a`2−1) . . . wk(a`kzka`k+1 . . . zka`).
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2.7 Algebraic Operations

Proposition 2.7.1. Suppose that F,G : Ω → M•(A) are fully matricial. Then so are F + G
and FG.

Proof. Note that if zT = Tw for some scalar matrix T , then we have

(F +G)(z)T = F (z)T +G(z)T = TF (w) + TG(w) = T (F +G)(w),

and

(FG)(z)T = F (z)G(z)T = F (z)TG(w) = TF (w)G(w) = T (FG)(w),

so that F + G and FG respect intertwinings. To show F + G and FG are uniformly locally
bounded, pick z0 ∈ Ω(n). Then F is bounded by M1 on some ball B(z0, R1) and G is bounded
by M2 on some ball B(z0, R2). Letting R = min(R1, R2), we have

‖z − z(m)
0 ‖ ≤ R =⇒ ‖F (z) +G(z)‖ ≤M1 +M2 and ‖F (z)G(z)‖ ≤M1M2.

Lemma 2.7.2. The sequence of sets Ω(n) = {z ∈ A : z is invertible} is a matricial domain
and the function

inv : Ω→ Ω : z 7→ z−1

is fully matricial.

Proof. Note that Ω respects direct sums and is nonempty. To show that Ω is uniformly open,
suppose that z ∈ Ω(n). Then we claim that B(z, 1/‖z−1‖) is contained in Ω. To see this note
that if w ∈ B(z, 1/‖z−1‖), then the series

w−1 = [z − (z − w)]−1 = z−1[1− (z − w)z−1]−1 =

∞∑
k=0

z−1[(z − w)z−1]k

converges and we have

‖w−1‖ ≤ ‖z−1‖
1− ‖z−1‖‖z − w‖

.

This same estimate shows that inv is uniformly locally bounded.

To show that inv respects intertwinings, suppose that zT = Tw. Multiplying by z−1 on the
left and w−1 on the right yields Tw−1 = z−1T or inv(z)T = T inv(w).

Proposition 2.7.3. Suppose that F : Ω1 → Ω2 and G : Ω2 → Ω3 are fully matricial. Then so
is G ◦ F .

Proof. To show thatG◦F respects intertwinings, suppose that zT = Tw. Then F (z)T = TF (w)
and hence G(F (z))T = TG(F (w)). To show uniform local boundedness, pick a point z0. By
uniform local boundedness of G, we can choose R and M > 0 such that G(B(F (z0), R)) ⊆
B(0,M). But by Corollary 2.5.10, there exists an R′ such that F (B(z0, R

′)) ⊆ B(F (z0), R).
Thus, G ◦ F is uniformly bounded on B(z0, R

′).
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2.8 Inverse Function Theorem

We now present an inverse function theorem for fully matricial functions. For background and
related results, see [Voi04, §11.5], [AKV13], [AKV15], [AM16]. In particular, the following
result is a version of [AKV15, Theorem 1.4].

Theorem 2.8.1. Let z∗ ∈Mn(A) and w∗ ∈Mn(B). Suppose that F : B(z∗, R)→ B(w∗,M) is
fully matricial with F (z∗) = w∗. Suppose that Λ1 = ∆F (z∗, z∗) is invertible with ‖Λ−1

1 ‖# ≤ K.
Then there exist r1 and r2 such that the following holds.

1. For each w ∈ B(w∗, r2), there exists a unique z ∈ B(z∗, r1) with F (z) = w.

2. The inverse function F−1 : B(w∗, r2)→ B(z∗, r1) is fully matricial.

More precisely, we can take

r1 = Rρ1

(
MK

R

)
, r2 =

R

K
ρ2

(
MK

R

)
,

where

ρ1(t) = 1− t1/2

(1 + t)1/2
ρ2(t) = 1 + 2t− 2t1/2(1 + t)1/2.

Proof. First, consider the special case where A = B, z∗ = 0(n), w∗ = 0(n), R = 1, and Λ1 = id.
Let Λk = ∆kF (0(n), . . . , 0(n)). For w ∈Mmn(A), note that F (z) = w if and only if z is a fixed
point of the function

Hw(z) = w + z − F (z) = w −
∞∑
k=2

Λk(z, . . . , z).

We want to show that if r and w are sufficiently small, thenGw defines a contractionB
(nm)

(0, r)→
B

(nm)
(0, r) and hence has a unique fixed point in B

(nm)
(0, r).

To determine whenHw is a contraction, we estimateHw(z)−Hw(z′). Let Λk = ∆kF (0(n), . . . , 0(n)).
Then for ‖z′‖ and ‖z‖ ≤ r, we have

‖Hw(z)−Hw(z′)‖ ≤
∞∑
k=2

‖Λk(z, . . . , z)− Λk(z′, . . . , z′)‖

≤
∞∑
k=2

k−1∑
j=0

‖Λk(z, . . . , z︸ ︷︷ ︸
j

, z − z′, z′, . . . , z′︸ ︷︷ ︸
k−1−j

)‖

≤M
∞∑
k=2

krk−1‖z − z′‖

= M

(
1

(1− r)2
− 1

)
‖z − z′‖.

Therefore, Hw is a contraction provided that

M

(
1

(1− r)2
− 1

)
< 1

or equivalently r < ρ1(M).



2.8. INVERSE FUNCTION THEOREM 35

To determine when Hw(z) maps B(mn)(0, r) into itself, note that for ‖z‖ ≤ r

‖Hw(z)‖ ≤ ‖w‖+

∞∑
k=2

‖Λk(z, . . . , z)‖

≤ ‖w‖+
Mr2

1− r
.

Thus, we have ‖Hw(z)‖ ≤ r provided that

‖w‖ ≤ ψ(r) := r − Mr2

1− r
.

Altogether, we have shown that r < ρ1(M) and ‖w‖ ≤ ψ(r), then Hw is a strict con-
traction B(mn)(0, r) → B(mn)(0, r). Therefore, by the Banach fixed point theorem, Hw has a
unique fixed point in B(mn)(0, r). We denote this fixed point by G(mn)(w). Thus, G(mn) is a

function B
(mn)

(0, ψ(r)) → B
(mn)

(0, r) for r < ρ1(M). By uniqueness of the fixed point, the
value of G(w) is independent of the choice of r, so G defines a function on the union of the

balls B
(mn)

(0, ψ(r)) for r < ρ1(M). But ψ(ρ1(M)) = ρ2(M), and thus G defines a function
B(0(n), ρ2(M))→ B(0(n), ρ1(M)).

We claim that G is fully matricial. Consider a similarity w′ = SwS−1 where z, z′ ∈
B(0(n), ρ2(M)) and S ∈ GLn(C). For r sufficiently close to ρ1(M), we have ‖w‖, ‖w′‖ ≤ ψ(r).
Note that F (SG(w)S−1) = SF (G(w))S−1 = SwS−1 and thus by uniqueness of the fixed point
for HSwS−1 on B(mn)(0, r), we have G(SwS−1) = SG(w)S−1. The argument for direct sums
is similar.

This completes the proof in the special case where A = B, z∗ = 0(n), w∗ = 0(n), R = 1,
and Λ1 = id. Now consider a function F which satisfies the hypotheses of the theorem in the
general case. Let

F̂ (nm)(z) =
1

R
(Λ−1

1 )#[F (nm)(Rz + z∗)− w∗].

Then F̂ is a fully matricial function B(0(n), 1) → B(0(n),MK/R). The previous argument

yields an inverse function Ĝ : B(0(n), ρ2(MK/R))→ B(0(n), ρ1(MK/R)). The inverse function
to F is given by

G(w) = RĜ

(
1

R
(Λ−1

1 )#[w − w∗]
)

+ z∗,

and this function is defined B(w∗, (R/K)ρ2(MK/R))→ B(z∗, Rρ1(MK/R)).

Remark 2.8.2. Curiously, ψ(r) is maximized when r = ρ1(M). Thus, the choice of r which will
guarantee that Hw maps B(mn)(0, r) into B(mn)(0, r) for the largest range of w is r = ρ1(M).
This is the same as the largest choice of r which will guarantee that Hw is a contraction.

Remark 2.8.3. In fact, the proof never used directly the fact that F (B(z∗, R)) ⊆ B(w∗,M). It
only used the Cauchy esimate

‖∆kF (z∗, . . . , z∗)‖ ≤
M

Rk
.

Thus, the conclusion of the theorem holds when we replace the boundedness assumption by
this Cauchy estimate.

Furthermore, the inverse function depends continuously on the original function F in the
following sense.
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Proposition 2.8.4. Let F,G : B(z∗, R)→M•(B) be fully matricial. Suppose that

F (B(z∗, R)) ⊆ B(F (z∗),M), G(B(z∗, R)) ⊆ B(G(z∗),M).

Suppose that ∆F (z∗, z∗) and ∆G(z∗, z∗) are invertible with

‖∆F (z∗, z∗)
−1‖# ≤ K, ‖∆G(z∗, z∗)

−1‖# ≤ K.

Let r1 and r2 be as in Theorem 2.8.1 and let

F−1 : B(F (z∗), r2)→ B(z∗, r1), G−1 : B(G(z∗), r2)→ B(z∗, r1)

be the inverse functions given by that theorem. If we have

sup
z∈B(z∗,r1)

‖F (z)−G(z)‖ ≤ r2

3
,

then

sup
w∈B(G(w),r2/3)

‖F−1(w)−G−1(w)‖ ≤ 9r1

2r2
2

sup
z∈B(z∗,r1)

‖F (z)−G(z)‖.

Proof. Let w ∈ B(G(z∗), r2/3). Note that B(G(z∗)r2/3) ⊆ B(F (z∗), 2r2/3) and hence F−1(w)
is defined. Now let w′ = F ◦G−1(w) and note that

F−1(w)−G−1(w) = F−1(w)− F−1 ◦ F ◦G−1(w) = F−1(w)− F−1(w′).

Moreover, we have

‖w − w′‖ = ‖G ◦G−1(w)− F ◦G−1(w)‖ ≤ sup
z∈B(z∗,r1)

‖F (z)−G(z)‖ ≤ r2

3
.

Now because F−1 maps B(z∗, r2) into B(F (z∗), r1), we have by Lemma 2.4.1 and Proposition
2.5.9

‖F−1(w)− F−1(w′)‖ =
∥∥∆[F−1](w,w′)[w − w′]

∥∥
≤ r1

(r2 − ‖w − F (z∗)(m)‖)(r2 − ‖w′ − F (z∗)(m)‖)
‖w − w′‖.

But w ∈ B(F (z∗), r2/3) and w′ ∈ B(F (z∗), 2r2/3) and therefore

‖F−1(w)− F−1(w′)‖ ≤ r1

(r2 − r2/3)(r2 − 2r2/3)
‖w − w′‖

≤ 9r1

2r2
2

sup
z∈B(z∗,r1)

‖F (z)−G(z)‖.

2.9 Uniformly Locally Bounded Families

In complex analysis, the identity theorem states that if two analytic functions on a connected
domain Ω agree in a neighborhood of a point z0, then they must agree on Ω. Another related
result is that if a sequence of functions fn is uniformly locally bounded, and if fn → f in a
neighborhood of a point, then fn → f locally uniformly on Ω.

More generally, for a family of functions which is uniformly locally bounded, the topology of
local uniform convergence on Ω is metrizable with the metric given by supz∈B(z0,r) |f(z)−g(z)|.
In fact, for various choices of z0 and r, we obtain equivalent metrics.

We will now describe the fully matricial analogues of these results.
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Definition 2.9.1. A fully matricial domain Ω is connected if z and w are in Ω(n), then there
exists m > 0 such that z(m) and w(m) are in the same connected component of Ω(nm).

Definition 2.9.2. We say that a family F of fully matricial functions Ω→M•(B) is uniformly
locally bounded if for every z∗ ∈ Ω, there exists R > 0 and M > 0 such that

sup
z∈B(z∗,R)

‖F (z)‖ ≤M for all F ∈ F .

Definition 2.9.3. Let F be uniformly locally bounded family of fully matricial functions
Ω→M•(B). For z∗ ∈ Ω, we denote

rad(z∗,F) = sup

{
R > 0 : sup

F∈F
sup

z∈B(0,R)

‖F (z)‖ < +∞

}
,

and we call rad(z∗,F) the radius of uniform local boundedness of F at z∗.

Definition 2.9.4. Let F be uniformly locally bounded family of fully matricial functions
Ω→M•(B). For z∗ ∈ Ω and r < rad(z∗,F), we define

dz∗,r(F,G) = sup
z∈B(z∗,r)

‖F (z)−G(z)‖

and

d′z∗,r(F,G) =

∞∑
k=0

rk‖∆kF (z∗, . . . , z∗)−∆kG(z∗, . . . , z∗)‖#.

Definition 2.9.5. Let d1 and d2 be metrics on a set X . We say that d1 . d2 if the map
idX : (X , d2) → (X , d1) is uniformly continuous. In other words, for every ε > 0, there exists
δ > 0 such that

d2(x, y) < δ =⇒ d2(x, y) < ε.

We say that d1 and d2 are uniformly equivalent or d1 ∼ d2 if we have d1 . d2 and d2 . d1.
Note that . is transitive and ∼ is an equivalence relation.

Theorem 2.9.6. Let Ω be a connected fully matricial domain. Let F be a uniformly locally
bounded family of fully matricial functions Ω1 →M•(A2).

1. For z∗ ∈ Ω and r < rad(z∗,F), the functions dz∗,r and d′z∗,r are metrics on F .

2. All the metrics in the collection {dz∗,r, dz∗,r : z∗ ∈ Ω, r < rad(z∗,F)} are uniformly
equivalent to each other.

Proof.
Step 1: From the definition dz∗,r, we see that dz∗,r is finite, satisfies the triangle inequality,

and satisfies dz∗,r(F,G) = dz∗,r(G,F ). To show that d′z∗,r is finite, choose R with r < R <
rad(z∗,F). By applying the Cauchy estimates (2.5.2), we see that for some constant M , we
have

‖∆k(F −G)(z∗, . . . , z∗)‖# ≤
2M

Rk
,

so for r < R, we have
∞∑
k=0

rk‖∆k(F −G)(z∗, . . . , z∗)‖# < +∞.
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It is also immediate that dz∗,r satisfies the symmetry and triangle inequality properties. In
other words, dz∗,r and d′z∗,r are pseudometrics.

Step 2: We claim that dz∗,r . d
′
z∗,r. Note that for z ∈ B(nm)(z∗, r), we have

‖(F −G)(z)‖ ≤
∞∑
k=1

∥∥∥∆k(F −G)(z∗, . . . , z∗)
#[z − z(m)

∗ , . . . , z − z(m)
∗ ]

∥∥∥
≤
∞∑
k=1

∥∥∆k(F −G)(z∗, . . . , z∗)
∥∥

#
rk,

and hence dz∗,r ≤ d′z∗,r.
Step 3: We claim that for r1, r2 < rad(z∗,F), we have d′z∗,r1 . dz∗,r2 . First, choose R with

r1 < R < rad(z∗,F), choose M such that

sup
z∈B(z∗,R)

‖F (z)‖ ≤M

and note that by the Cauchy estimate (2.5.2), we have

‖∆k(F −G)(z∗, . . . , z∗)‖# ≤
2M

Rk
.

By the same estimate we have

‖∆k(F −G)(z∗, . . . , z∗)‖# ≤
dz∗,r2(F,G)

rk2

Thus, we have

d′z∗,r1(F,G) =

∞∑
k=0

rk1‖∆k(F −G)(z∗, . . . , z∗)‖#

≤
N−1∑
k=0

dz∗,r2(F,G)

(
r1

r2

)k
+

∞∑
k=N

2M
(r1

R

)k
= dz∗,r2(F,G)

(r1/r2)N − 1

r1/r2 − 1
+

2M(r1/R)N

1− r1/R
.

If ε > 0, then by choosing N large enough, we can make the second term smaller than ε/2.
After we fix such an N , then if dz∗,r2(F,G) is sufficiently small, then the first term will also be
less than ε/2. This shows that d′z∗,r1 . dz∗,r2 .

Step 4: Using Steps 2 and 3, we see that for r1, r2 < rad(z∗,F), we have

dz∗,r1 . d
′
z∗,r1 . dz∗,r2 ,

so the distances dz∗,r are equivalent for different values of r. Similarly,

d′z∗,r1 . dz∗,r2 . d
′
z∗,r2 ,

so the distances d′z∗,r are equivalent for different values of r. Finally, the distances dz∗,r and
d′z∗,r are equivalent.

Step 5: Let us write z ∼ z′ if the pseudometrics dz,r and dz′,r′ are equivalent for some r
and r′ (or equivalently for all r and r′). This defines an equivalence relation on Ω1. We claim
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that each equivalence class is uniformly open. To see this, fix z∗ ∈ Ω(n). Choose an R > 0 and
M > 0 such that

sup
F∈F

sup
z∈B(0,R)

‖F (z)‖ ≤M.

Suppose that z ∈ B(nm)(z∗, R/3). Then B(z, 2R/3) ⊆ B(z∗, R) and hence 2R/3 < rad(z,F).
Also, since B(z, 2R/3) ⊆ B(z∗, R), we have

dz,2R/3 ≤ dz∗,R.

On the other hand, we also have ‖z(m)
∗ − z‖ < R/3 and hence B(z

(m)
∗ , R/3) ⊆ B(z, 2R/3).

Using the fact that F preserves direct sums, we have

dz∗,R/3(F,G) = sup
w∈B(z∗,R/3)

‖F (w)−G(w)‖

= sup
w∈B(z∗,R/3)

‖F (w(m))−G(w(m))‖

≤ sup
w′∈B(z

(m)
∗ ,R/3)

‖F (w)−G(w)‖

≤ dz,2R/3(F,G).

Therefore, we have dz∗,R/3 ≤ dz,2R/3 ≤ dz∗,R and hence z ∼ z∗.
Step 6: Now we show that any two points z1 ∈ Ω(n1) and z2 ∈ Ω(n2) are equivalent.

Note that because Ω is connected, there exists m such that z
(n2m)
1 and z

(n1m)
2 are in the same

connected component of Ω(n1n2m). As a consequence of Step 5, the equivalence classes of points
in Ω(n1n2m) are open subsets of Ω(n1n2m). Each equivalence class in Ω(n1n2m) is also relatively

closed because its complement is the union of the other equivalence classes. Because z
(n2m)
1

and z
(n1m)
2 are in the same connected component, we must have z

(n2m)
1 ∼ z

(n1m)
2 . As another

consequence of Step 5, we have z1 ∼ z(n2m)
1 and z2 ∼ z(n1m)

2 and therefore z1 ∼ z2.

Step 7: We have now shown that all the pseudometrics in claim (2) are uniformly equivalent.
As a consequence if dz∗,r(F,G) = 0 for some z∗ and r, then this holds for all z∗ and r which
implies that F = G. Therefore, each dz∗,r is a metric.

Corollary 2.9.7 (Identity Theorem). Let Ω ⊆ M•(A) be a connected fully matricial domain,

and let F,G : Ω → M•(B) be fully matricial functions and z∗ ∈ Ω
(n0)
1 . The following are

equivalent:

1. ∆kF (z∗, . . . , z∗) = ∆kG(z∗, . . . , z∗) for all k.

2. F = G on B(z∗, r) for some r > 0.

3. F = G on Ω.

Proof. Note that the family {F,G} is uniformly locally bounded. Hence, this follows immedi-
ately from Theorem 2.9.6

Another consequence of the theorem is that if a sequence {Fn} is uniformly locally bounded,
and if Fn converges uniformly in a neighborhood of a point, then it converges on all of Ω in the
following sense.
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Definition 2.9.8. We say that a sequence Fn of fully matricial functions Ω→M•(B) converges
uniformly locally to F if for every z0 ∈ Ω(n0), there exists R > 0 such that

lim
n→∞

sup
z∈B(z0,R)

‖Fn(z)− F (z)‖ = 0.

Lemma 2.9.9. If Fn is fully matricial and Fn → F uniformly locally, then F is fully matricial.

Proof. Note that F respects intertwinings because zT = Tw, then

F (z)T = lim
n→∞

Fn(z)T = lim
n→∞

TFn(w) = TF (w).

To show that F is uniformly locally bounded, fix z0. There exists R > 0 and n such that
supz∈B(z0,R)‖Fn(z) − F (z)‖ ≤ 1. Since Fn is fully matricial, there exists r and M such
supz∈B(z∗,r)‖Fn(z)‖ ≤M . This implies that ‖F (z)‖ ≤M + 1 for z ∈ B(z∗,min(r,R)).

Corollary 2.9.10. Let Ω be a connected fully matricial domain and let Fn : Ω→M•(B) be a
sequence of fully matricial functions which is uniformly locally bounded. Let z∗ ∈ Ω(n). Then
the following are equivalent:

1. For every k, the sequence ∆kFn(z∗, . . . , z∗) converges with respect to ‖·‖#.

2. For some r > 0, the sequence Fn converges uniformly on B(z∗, r).

3. There exists some fully matricial function F such that Fn → F uniformly locally on Ω1.

Proof. Suppose that R < rad(z∗, {Fn}). Using the Cauchy estimates, we see that

∞∑
k=0

Rk‖∆k(Fn − Fm)(z∗, . . . , z∗)‖#

converges absolutely and the rate of convergence is independent of n and m. Therefore, (1)
occurs if and only if {Fn} is Cauchy in dz∗,R. Because the metrics in Theorem 2.9.6 are
uniformly equivalent, they preserve Cauchy sequences. Hence, {Fn} is Cauchy in dz∗,R if and
only if it is Cauchy in dz,r for every z and r < rad(z, {Fn}). This is equivalent to (2) and
equivalent to (3) in light of Lemma 2.9.9.

2.10 Problems and Further Reading

Problem 2.1.

1. For a fully matricial domain Ω, define the similarity-invariant envelope Sim(Ω) by

Sim(Ω)(n) = {SzS−1 : z ∈ Ω(n), S ∈ GLn(C)}.

Prove that Sim(Ω) is a fully matricial domain.

2. Let F : Ω1 → Ω2 be fully matricial. Show that F has a unique fully matricial extension
to a function Sim(Ω1)→ Sim(Ω2).

Problem 2.2. Suppose that F is fully matricial and F (B(z0, R)) ⊆ B(0,M). Show that
the finite Taylor-Taylor expansion in Lemma 2.4.1 holds for all z ∈ B(z0, R), not just z ∈
B(z0, R/

√
2).
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Problem 2.3. Let Λ : Mn0,n1
(A∞)×· · ·×Mnk−1,nk(A1)→Mn0,nk(A2) be a multilinear form.

Show that
‖Λ‖# = sup

m
‖Λ(m,...,m)‖.

Problem 2.4. Suppose that F : Ω1 → Ω2 is fully matricial, let zj ∈ Ω(nj), and suppose that
F (B(z0 ⊕ · · · ⊕ zk, R)) ⊆ B(0,M). Prove that

‖∆kF (z0, . . . , zk)‖# ≤
M

Rk
.

Hint: Use Lemma 2.5.2 and Problem 2.1.

Problem 2.5. State and prove a similarity-invariance property for ∆kF (z0, . . . , zk).

Problem 2.6. Let F,G : Ω1 →M•(A2) be fully matricial.

1. Compute the power series expansion of FG by formally manipulating the power series of
F and G and appealing to Lemma 2.5.11 for justification.

2. Compute ∆k(FG)(z0, . . . , zk) directly using upper triangular matrices.

Problem 2.7. Let F : Ω1 → Ω2 and G : Ω2 → Ω3 be fully matricial. Compute the power
series expansion of G ◦ F at z0 by formally manipulating the power series expansions of F and
G and appealing to Lemma 2.5.11. (Compare [Voi04, §13.10].

Problem 2.8. Define what it means for a sequence of fully matricial functions to be uniformly
locally Cauchy. Show that a sequence is uniformly locally Cauchy if and only if it is uniformly
locally convergent.

Problem 2.9. Suppose that Fn : Ω1 → M•(A2) is a uniformly locally bounded sequence of
fully matricial functions. State and prove a version of Corollary 2.9.10 holds where uniform
local convergence is replaced by:

1. Pointwise convergence in ‖·‖Mn(A).

2. Pointwise convergence in weak, strong, or σ-weak operator topology with respect to a
given realization of A2 acting on some Hilbert space H.

3. Convergence in ‖·‖2 which is uniform on B(z0, R), where we assume that (A, τ) is a tracial
von Neumann algebra and ‖z‖2 = [τ ⊗ Tr(z∗z)]1/2 for z ∈Mn(A).

Further Reading

A systematic development of fully matricial function theory was given by Dmitry Kaliuzhnyi-
Verbovetskyi and Victor Vinnikov [KVV14]. The authors work in much greater algebraic
generality than we need here, replacing vector spaces over C with modules over a general
commutative ring. In particular, they describe how to extend the domain of the function to
a similarity-invariant envelope. They also show that the derivatives ∆kF are higher-order
matricial functions, characterized by a more complicated versions of the similarity and direct-
sum conditions. We refer to their bibliography and introduction for a more complete list of
references.

We remark that the free difference quotient has also been used in the study of operator
modulus of continuity by Peller [Pel06], which will come up in our study of quantitative non-
commutative central limit theorems.





Chapter 3

The Cauchy-Stieltjes Transform

3.1 Introduction

Recall that the Cauchy-Stieltjes transform of a finite measure on the real line is gµ(ζ) =∫
R(ζ − t)−1 dµ(t). The Cauchy-Stieltjes transforms of spectral measures are an important tool

for non-commutative probability both for computation and for analytic estimates. Some of its
most useful properties are the following.

1. For a compactly supported measure µ, the power series coefficients of gµ at ∞ are the
moments of µ.

2. There are simple and sharp a priori estimates on gµ and its derivatives; for instance, if
Im ζ ≥ ε, then |∂nζ gµ(ζ)| ≤ µ(R)/εn+1.

3. There are straightforward analytic conditions that test whether a function g is the Cauchy-
Stieltjes transform of some measure.

Properties (2) and (3) together mean that if an analytic function g satisfies some simple
analytic conditions, then we obtain much more precise analytic information about g “for free.”

This chapter will prove analogous properties to (1) - (3) above for the fully matricial Cauchy-
Stieltjes transform of an A-valued law. The main theorem will be the analytic characterization
of Cauchy-Stieltjes transforms due to Williams [Wil17, Theorem 3.1]. As motivation for this
result, and as an ingredient for the proof, we now state the analytic characterization of Cauchy-
Stieltjes transforms in the scalar case. Here H+ = {ζ ∈ C : Im ζ > 0} and H− = {ζ ∈ C :
Im ζ < 0} are the upper and lower half-planes.

Lemma 3.1.1. Let g : H+ → C. The following are equivalent:

1. g is the Cauchy-Stieltjes transform of a measure µ supported in [−M,M ].

2. g is analytic, g maps H+ into H−, and g̃(ζ) = g(1/ζ) has an analytic extension to
B(0, 1/M) satisfying g̃(0) = 0 and g(ζ) = g(ζ).

Proof. If g(ζ) =
∫
R(ζ − t)−1 dµ(t), then clearly g is an analytic function H+ → H−. Moreover,

g̃(ζ) =

∫
R
ζ(1− tζ)−1 dµ(t)

which is analytic on B(0, 1/M), preserves complex conjugates, and vanishes at 0.

43



44 CHAPTER 3. THE CAUCHY-STIELTJES TRANSFORM

Conversely, suppose that g satisfies these analytic conditions. Recall that if u is bounded
and continuous on H+ and harmonic on H+, then

u(ζ) = −
∫
R

1

π
Im(ζ − t)−1u(t) dt;

this is because the integral on the right hand side is harmonic and bounded with the same
limiting values as u on the boundary of H+. Letting uδ(ζ) = Im g(t+ iδ), we have

Im g(ζ + iδ) = −
∫
R

Im(ζ − t)−1 1

π
Im g(t+ iδ) dt.

Now −
∫
R(ζ − t)−1π−1g(t+ iδ) dt is analytic on H+ and has the same imaginary part as g(ζ),

so they must be equal up to adding a real constant. But both functions vanish as ζ →∞ along
the positive imaginary axis, and hence

g(ζ + iδ) =

∫
R
(ζ − t)−1 dµδ(t),

where

dµδ(t) = − 1

π
Im g(t+ iδ) dt.

We want to define µ as a weak limit of µδ as δ → 0. To accomplish this, we first show that µδ
does not have much mass outside [−R,R] for R > M .

Because g̃(ζ) is analytic on B(0, 1/M), we know that for ε > 0, we have

|ζ| < 1

R
=⇒ |g̃(ζ)| ≤ CR

for some constant CR > 0. Then by Schwarz’s lemma for functions on the disk, we have

|ζ| < 1

R
=⇒ |g̃(ζ)| ≤ CRR|ζ|.

Therefore,

|ζ| > R =⇒ |g(ζ)| ≤ C ′R
|ζ|

.

Now Im g = 0 on R \ [−M,M ] and hence for |t| > R,

| Im g(t+ iδ)| = | Im g(t+ iδ)− Im g(t)|
≤ |g(t+ iδ)− g(t)|
≤ δ sup

s∈[0,δ]

|g′(t+ is)|.

Now B(t+is, 1
2 (|t|−R)) ⊆ {|ζ| > R+ 1

2 (|t|−R)} where g is bounded by C ′R/(R+(1/2)(|t|−R)) =
2C ′R/(|t|+R), and hence by the Cauchy estimates on derivatives,

|g′(t+ is)| ≤ 2

|t| −R
2C ′R
|t|+R

=
4C ′R
|t|2 −R2

.

Thus,

| Im g(t+ iδ)| ≤ 4C ′Rδ

|t|2 −R2
.
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In particular, letting M < R′ < R, we have

µδ(R \ [−R,R]) ≤ δ
∫
R\[−R,R]

4C ′R′

|t|2 − (R′)2
dt,

where the integral is finite. Therefore, for each point ζ, we have

g(ζ) = g(ζ + iδ) +O(δ) =

∫ R

−R
(ζ − t)−1 dµδ(z) +O(δ)

Moreover,

µδ([−R,R]) ≤
∫ R

−R

2R2

t2 +R2
dµδ(t) = −2R Im g(iR+ iδ).

Thus, the measures µδ|[−R,R] have uniformly bounded mass, and hence this family of measures
is compact. Therefore, for each R, there exists a sequence δn such that µδn |[−R,R] converges to
some limit µ supported on [−R,R] as δ → 0. In the limit, we have

g(ζ) =

∫
(ζ − t)−1 dµ(t).

Thus, for each R > M , we have g = gµ for some µ supported on [−R,R]. The moments of µ
are uniquely determined by the power series expansion of g at ∞, hence µ is unique. Then µ
is supported in [−R,R] for every R > M , so that µ is supported in [−M,M ].

3.2 Definition

We have seen in §2.1 that the Cauchy-Stieltjes transform of an A-valued law should be viewed
as a fully matricial function over A rather than simply an A-valued function. To give the full
definition, we must first define the natural domain for the Cauchy-Stieltjes transform, which
consists of operators with positive imaginary part. Thus, we begin with the basic properties of
real and imaginary parts of operators.

Notation 3.2.1. For z ∈Mn(A), we denote Re(z) = 1
2 (z + z∗) and Im(z) = 1

2i (z − z
∗).

Observation 3.2.2. The operators Re(z) and Im(z) are self-adjoint and z = Re(z) + i Im(z).
Moreover, if H is a Hilbert space or a right Hilbert A-module and z ∈ B(H) and ξ ∈ H, then

Re〈ξ, zξ〉 = 〈ξ,Re(z)ξ〉 Im〈ξ, zξ〉 = 〈ξ, Im(z)ξ〉.

Lemma 3.2.3. Suppose that z ∈ Mn(A) and Im z ≥ ε > 0, where ε is a scalar and the
inequality holds in A. Then z is invertible with ‖z−1‖ ≤ 1/ε and Im(z−1) ≤ −ε/‖z‖2.

Proof. Note that Mn(A) is a C∗-algebra and hence can be realized as a concrete C∗-algebra of
operators on a Hilbert space H. Then observe that for ξ ∈ H, we have

‖ξ‖‖zξ‖ ≥ |〈ξ, zξ〉| ≥ Im〈ξ, zξ〉 = 〈ξ, (Im z)ξ〉 ≥ 〈ξ, εξ〉 = ε‖ξ‖2,

which shows that ‖zξ‖ ≥ ε‖ξ‖ and hence ker z = 0 and Ran z is closed. On the other hand,
we have Im z∗ = − Im z ≤ −ε, so similar reasoning shows that ‖z∗ξ‖ ≥ ε‖ξ‖ which implies
that ker z∗ = 0 and hence Ran(z) = H. Since ker z = 0 and Ran(z) = H, it follows that z
is invertible as a linear operator. Because of the estimate ‖zξ‖ ≥ ε‖ξ‖, we know that z−1 is
bounded with ‖z−1‖ ≤ 1/ε.
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Finally, to show that Im(z−1) ≤ −ε/‖z‖2, note that for ξ ∈ H, we have

Im〈ξ, z−1ξ〉 = Im〈zz−1ξ, z−1ξ〉 = Im〈z−1ξ, z∗(z−1ξ)〉

= − Im〈z−1ξ, z(z−1ξ)〉 ≤ −ε‖z−1ξ‖2 ≤ −ε
‖z‖2

‖ξ‖2,

using the fact that ‖ξ‖ = ‖zz−1ξ‖ ≤ ‖z‖‖z−1ξ‖.

Definition 3.2.4 (Fully Matricial Upper/Lower Half-plane). We define H(n)
+,ε(A) = {z ∈

Mn(A) : Im z ≥ ε} and define H(n)
+ (A) =

⋃
ε>0 H

(n)
+,ε(A). Finally, we define the fully matricial

upper half-plane as H+(A) = (H(n)
+ (A))n∈N.

Similarly, we define H(n)
−,ε(A) = {z ∈Mn(A) : Im z ≤ −ε} and H(n)

− (A) =
⋃
ε>0 H

(n)
− (A).

Finally, we define H(n)
±,0(A) = {z ∈Mn(A) : ± Im z ≥ 0}.

Observation 3.2.5. H+(A) and H−(A) are connected fully matricial domains (although H+,0(A)
and H−,0(A) are not because they fail to be open).

Proof. To see that H+(A) respect direct sums, suppose z1 ∈ H(n1)
+ (A) and z2 ∈ H(n2)

+ (A). Then
Im z1 ≥ ε1 and Im z2 ≥ ε2 for some ε1, ε2 > 0. Then Im(z1 ⊕ z2) = Im z1 ⊕ Im z2 ≥ min(ε1, ε2),

so that z1 ⊕ z2 ∈ H(n1+n2)
+ (A).

To see that H+(A) is uniformly open, suppose that z ∈ H(n)
+ (A). If Im z ≥ ε > 0, then we

have B(z, ε) ⊆ H+(A). Indeed, if z′ ∈ B(mn)(z(n), ε), then

Im z′ ≥ Im(z(n))− ‖z(m) − z′‖ = (Im z)(n) − ‖z(m) − z′‖ ≥ ε− ‖z(m) − z′‖ > 0.

Furthermore, each H(n)
+ (A) is non-empty and connected (in fact, convex), and hence H+(A)

is non-empty and connected. The argument for H−(A) is symmetrical.

Definition 3.2.6 (Cauchy-Stieltjes Transform). Let σ : A〈X〉 → A be a generalized law.

We define the Cauchy-Stieltjes transform Gσ as the sequence of functions G
(n)
σ : H(n)

+ (A) →
H(n)
−,0(A) given by

G(n)
σ (z) = σ(n)[(z −X(n)

)−1],

where X is the operator of left multiplication by X on A〈X〉⊗σA and σ(b) = 〈1⊗1, b(1⊗1)〉σ
(as in Theorem 1.6.7).

Note here that the definition makes sense because if z ∈ H(n)
+ , then for some ε > 0, we have

Im(z −X(n)
) = Im(z) ≥ ε,

which implies that z −X(n)
is invertible.

Lemma 3.2.7. For a generalized law σ, the Cauchy-Stieltjes transform Gσ is a fully matricial
function. We also have

z ∈ H(n)
+,ε(A) =⇒ ‖Gσ(z)‖ ≤ ‖σ(1)‖

ε
.
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Proof. Let B be the C∗-algebra generated by A and X. Note that the inclusion A → B is fully

matricial. Moreover, the function z 7→ z − X(n)
is the sum of two fully matricial functions,

so it is fully matricial on M•(A) and in particular on H+(A). Since inv fully matricial, so is

(z − X(n)
)−1. Finally, σ is a completely bounded linear map and hence is fully matricial by

Proposition 2.6.1, so σ(n)[(z −X(n))−1] is fully matricial.

In the future, we will simplify and slightly abuse notation by writing

G(n)
σ (z) = σ(n)[(z −X(n))−1],

that is, writing σ instead of σ even though σ is technically only defined on 〈A〉〈X〉 and writing
X for the multiplication operator X.

3.3 Derivatives and Expansion at ∞

Lemma 3.3.1. Let zj ∈Mnj (A) and wj ∈Mnj−1×nj (A). Then

∆kGσ(z0, . . . , zk)[w1, . . . , wk] = (−1)kσ(n0×nk)[(z0−X(n0))−1w1(z1−X(n1))−1 . . . wk(z−X(nk))−1]

and in particular if Im zj ≥ εj, then

‖∆kGσ(z0, . . . , zk)‖ ≤ ‖σ(1)‖
ε0 . . . εk

.

Proof. Denote
Z = (z0 −X(n0))⊕ · · · ⊕ (zk −Xnk).

Fix small scalars ζ1, . . . , ζk and define

W =



0 ζ1w1 0 . . . 0 0
0 0 ζ2w2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 ζkwk
0 0 0 . . . 0 0


]

Note that if ζ1, . . . , ζk are sufficiently small, then

σ(n)[(Z+W−X(n))−1] = σ(n)[Z−1(1+W (Z−X(n))−1)−1] =

k∑
j=0

σ(n)[(Z−X(n))−1(W (Z−X(n))−1)j ],

where the expansion is truncated because WZ−1 is nilpotent. By looking at the upper right
block, we obtain the desired formula for ∆kGσ, and the upper bound for ‖∆kGσ‖ follows
immediately using Lemma 3.2.3.

Notation 3.3.2. We denote G̃σ(z) = Gσ(z−1) where defined.

Lemma 3.3.3. Suppose that σ is a generalized law with rad(σ) ≤ M . Then G̃σ has a fully
matricial extension to B(0, 1/M) given by

G̃σ(z) = σ(n)[z(1−X(n)z)−1] =

∞∑
k=0

σ(n)[z(X(n)z)k].
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Proof. First, we observe that if z−1 ∈ H(n)
+ (A), then

G̃σ(z) = σ(n)[(z−1 −X(n))−1]

= σ(n)[(z−1 −X(n))−1]

= σ(n)[((1−X(n)z)z−1)−1]

= σ(n)[z(1−X(n)z)−1].

However, the latter function is also defined whenever ‖z‖ < 1/M . Now we claim that this
extension of G̃σ is fully matricial on the domain

Ω(n) := {z : (1−X(n)
z)−1 is invertible} ⊇ B(0, 1/M) ∪H+(A) ∪H−(A),

where X is the multiplication operator on A〈X〉 ⊗σ A. The argument that Ω(n) is a matricial
domain is similar to the argument that invertible elements of a C∗-algebra form a matricial

domain. Moreover, σ(n)[z(1 − X(n)
z)−1] is fully matricial on Ω because it a built out of the

inclusion A → B by translation, inverse, products, and application of σ.

Lemma 3.3.4. We have

∆kG̃σ(0(n0), . . . , 0(nk))[w1, . . . , wk] = σ(n0×nk)[w1X
(n1)w2 . . . X

(nk−1)wk].

Proof. From the geometric series expansion, we have for z ∈ B(n)(0, 1/M) that

G̃σ(z) =

∞∑
k=0

σ(n)[z(X(n)z)k].

If we let Λk be the multilinear form

Λk(z1, . . . , zk) = σ[z1Xz2 . . . Xzk],

then for every n and every z ∈ B(n)(0(n), 1/M), we have

G̃σ(z) =

∞∑
k=0

Λ
(n)
k (z, . . . , z).

Therefore, by Lemma 2.5.11, we have Λk = ∆kG̃σ(0, . . . , 0). The general formula for ∆kG̃σ(0(n0), . . . , 0(nk))
follows from Lemma 2.5.2.

Lemma 3.3.5. If ‖z‖ < 1/M , then we have∥∥∥G̃σ(z)
∥∥∥ ≤ ‖σ(1)‖‖z‖

1−M‖z‖

In particular,

‖z‖ < 1/(M + ε) =⇒
∥∥∥G̃σ(z)

∥∥∥ ≤ ‖σ(1)‖
ε

.

Proof. This follows by applying the triangle inequality to the geometric series expansion.
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3.4 Analytic Characterization

The following theorem is due to Williams [Wil17, Theorem 3.1] and Anshelevich-Williams
[AW16, Theorem A.1].

Theorem 3.4.1. Let G(n) : H(n)
+ (A)→Mn(A). The following are equivalent:

1. G = Gσ for some generalized law σ with rad(σ) ≤M if and only if the following conditions
hold.

2. The following conditions hold:

(a) G is fully matricial.

(b) G maps H(n)
+ (A) into

(n)
−,0(A).

(c) G̃(z) = G(z−1) has a fully matricial extension to B(0, 1/M).

(d) This extension satisfies G̃(0) = 0 and G̃(z∗) = G̃(z)∗.

(e) For every ε > 0, there exists Cε > 0 such that ‖z‖ ≤ 1/(M + ε) implies ‖G̃(z)‖ ≤ Cε.

Proof of (1) =⇒ (2). Assume that (1) holds. We have already shown that (a), (b), (c), and
(e) hold in Lemmas 3.2.7, 3.3.3, 3.3.5. Moreover, (d) follows from power series expansion in
Lemma 3.3.3.

The proof of (2) =⇒ (1) is more involved, so we will prove several lemmas before concluding
the proof of the Theorem. First, we define the map σ : A〈X〉 → A. The correct choice of σ is
clear in light of Lemma 3.3.4.

Lemma 3.4.2. Let G satisfy (2) of Theorem 3.4.1. Define σ : A〈X〉 → A by

σ(z0Xz1 . . . Xzk) = ∆k+1G̃(0, . . . , 0)[z0, . . . , zk].

Then any R > M is an exponential bound for σ(n).

Proof. Because ‖z‖ ≤ 1/R implies ‖G̃(z)‖ ≤ CR−M , we have by Lemma 2.4.2 that

‖∆kG̃(0(n), . . . , 0(n))‖ ≤ CR−MRk.

Next, we show that σ extends to the analytic completion of A〈X〉. Fix R > M . As in the
proof of Theorem 1.6.5, we define a norm on Mn(A〈X〉) = Mn(A)〈X(n)〉 by

‖F (X(n))‖R = inf


n∑
j=1

p(Fj) : Fj monomials and f =

n∑
j=1

Fj

 ,

where p(z0X
(n)z1 . . . X

(n)zk) = Rk‖z0‖ . . . ‖zk‖ for z0, . . . , zk ∈ Mn(A). We denote the com-

pletion by 〈A〉〈X〉(n)
R and recall that this is a Banach ∗-algebra.

Lemma 3.4.3. Fix R > M . Then the map σ(n) defined above extends to a bounded map

A〈X〉(n)
R →Mn(A). Moreover, if ‖z‖R < 1/R, then 1−X(n)z is invertible in A〈X〉(n)

R and we
have

G̃(z) = σ(n)[z(1−X(n)z)−1].
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Proof. The first claim follows because ‖σ(n)(F (X))‖ ≤ CR−M‖F (X)‖R since R is an expo-
nential bound for σ. Next, suppose that ‖z‖R ≤ 1/R. Then because the geometric series

(1 − X(n)z)−1 converges in A〈X〉(n)
R , we see that 1 − X(n)z is invertible. Moreover, a direct

power series computation shows that G̃(z) = σ(n)[z(1 − X(n)z)−1] after we invoke Lemma
2.5.8.

With these preparations in order, we can begin to prove complete positivity of σ. We start
out by proving that certain symmetric moments are positive.

Lemma 3.4.4. Suppose that G satisfies (2) of Theorem 3.4.1 and define σ as in Lemma 3.4.2.
Let A0 and A1 be self-adjoint elements of Mn(A) with A1 ≥ ε > 0. Then

σ(n)[(A1(X(n) +A0))2kA1] ≥ 0.

Proof. Fix A0 and A1 and let φ be a state on Mn(A). Consider the scalar-valued function
g : H+ → H− given by

g(ζ) = φ ◦G(A−1
1 ζ −A0).

Now we analyze the behavior of g at ∞. Note that ζ−1A−1
1 − A0 is invertible in A〈X〉(n)

R if ζ
is small enough. In fact, for sufficiently small ζ, we have ‖(ζ−1A−1

1 −A0)−1‖ < 1/R. Thus, we
have

g(1/ζ) = φ ◦ G̃((A−1
1 ζ−1 −A0)−1)

= φ ◦ σ[(A−1
1 ζ−1 −A0)−1(1−X(n)(A−1

1 ζ−1 −A0)−1)−1]

= φ ◦ σ[(A−1
1 ζ−1 −A0 −X(n))−1]

= φ ◦ σ[A1ζ(1− (X(n) +A0)A1ζ)−1]

=

∞∑
k=0

ζk+1 φ ◦ σ[(A1(X(n) +A0))kA1],

where the intermediate steps are performed in A〈X〉(n)
R . In particular, g̃(ζ) = g(1/ζ) extends

to be analytic in a neighborhood of 0. Because G̃ preserves adjoints, we have g(ζ) = g(ζ).
Therefore, g is the Cauchy-Stieltjes transform of some compactly supported measure ρ on R.
Moreover, by examining the power series coefficients of g̃ at 0, we have

φ ◦ σ[(A1(X(n) +A0))2kA1] =

∫
R
t2k dρ(t) ≥ 0.

Because this holds for every state φ, we have σ[(A1(X(n) +A0))2kA1] ≥ 0 by Proposition 1.1.8
(5).

Lemma 3.4.5. Let G satisfy (2) and let σ be as above. Let F (Y ) = C0Y C1 . . . Y Ck be a
monomial in Mn(A)〈Y 〉 and let A0 ∈Mn(A) be self-adjoint. Then

σ(n)(F (X(n) +A0)∗F (X(n) +A0)) ≥ 0.
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Proof. Let us denote Y = X(n) +A0. Consider the matrix

Cδ =



δ δ2C∗k 0 . . . 0 0 0
δ2Ck δ δ2C∗k−1 . . . 0 0 0

0 δ2Ck−1 δ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . δ δ2C∗2 0
0 0 0 . . . δ2C2 δ δ2C∗1
0 0 0 . . . 0 δ2C1 δ + δ−4kC∗0C0


Observe that if δ is sufficiently small, then Cδ ≥ ε for some ε > 0. Indeed, the diagonal terms
δ will be much larger than the off-diagonal terms, while the extra diagonal term δ−4kC∗kCk is
already positive. Therefore, by the previous lemma,

σ(n)[(CδY
(k+1))2kCδ] ≥ 0.

We claim that the top left n × n block of (CδY
(k+1))2kCδ is equal to F (Y )∗F (Y ) + O(δ).

To see this, consider what happens when we multiply out (Cδ(X
(n(k+1)) + A

(k+1)
0 ))2kCδ using

matrix multipication, treating each n × n block as a unit. The top left block of the product
will be the sum of terms of the form

(Cδ)1,i1Y (Cδ)i1,i2Y . . . (Cδ)ik−2,ik−1
Y (Cδ)ik−1,1

since Y (k+1) is a block diagonal matrix. Because Cδ is tridiagonal, the sequence of indices must
have |ij−1 − ij | ≤ 1. We can picture such a sequence as a path in the graph with vertices
{1, . . . , k + 1} and edges between j and j + 1 and a self-loop at each vertex j.

All the entries in Cδ are O(δ) except the bottom right entry with the term δ−4kC∗kCk. Thus,
any path which yields a term larger than O(δ) must reach the last vertex k + 1 and use the
self-loop at the vertex k + 1. But if we travel along the path at a speed ≤ 1, the only way we
can get from 1 to k + 1, use the self-loop at k + 1, and get then back to 1 in 2k + 1 steps is to
follow the path

1, 2, . . . , k, k + 1, k + 1, k, . . . , 2, 1.

So the only term in the sum which is not O(δ) is the term

(δ2C∗k)Y . . . (δ2C∗1 )Y (δ + δ−4kC∗0C0)Y (δ2C1) . . . Y (δ2Ck) = F (Y )∗F (Y ) +O(δ).

Hence, the upper left entry of (CδY
(k+1))2kCδ is F (Y )∗F (Y ) +O(δ). As a consequence,

σ(n)(F (Y )∗F (Y )) +O(δ) ≥ 0,

and thus by taking δ to zero, we have σ(n)(F (Y )∗F (Y )) ≥ 0.

To finish the proof that σ(n)(P (X)∗P (X)) ≥ 0 for every P , we will use the following matrix
amplification trick to reduce to the case of a monomial.

Lemma 3.4.6. Let P (X) ∈Mn(A〈X〉) be a polynomial of degree d. Denote

X̂ =

[
X 1
1 X

]
.

Then for some m, there exist matrices C0, . . . , Cd ∈M2m(A) such that[
P (X) 0

0 0

]
= C0X̂

(m)C1X̂
(m) . . . Cd−1X̂

(m)Cd.



52 CHAPTER 3. THE CAUCHY-STIELTJES TRANSFORM

Proof. Fix d. Let Γ(n) be the set of all polynomials A〈X〉(n) of degree ≤ d which can be
expressed as in the conclusion of the lemma.

First, we claim that Γ(1) contains the monomials in A〈X〉. Let p(X) = a0Xa1 . . . Xak be a
monomial of degree k ≤ d. Then we have[

p(X) 0
0 0

]
=

[
a0 0
0 0

] [
X 1
1 X

] [
a1 0
0 0

]
. . .

[
X 1
1 X

] [
0 1
0 0

] [
X 1
1 X

] [
ak 0
0 0

]
([

0 1
0 0

] [
X 1
1 X

])d−k [
1 0
0 0

]
Next, we claim that if P (X) ∈ Γ(n) and ei,j is the (i, j) matrix unit in Mk(C), then the

matrix P (X)⊗ ei,j with P (X) in the (i, j) block and zeroes elsewhere is in Γ(nk). Given such
a P (X), there exist C1, . . . , Cd in M2m(A) such that[

P (X) 0
0 0

]
= C0X̂

(m)C1X̂
(m) . . . Cd−1X̂

(m)Cd.

Then observe the 2(m+ n(k − 1)) by 2(m+ n(k − 1)) matrix equation:[
P (X)⊗ ei,j 0

0 0

]
=

[
1n ⊗ ei,1 0

0 0

] [
C0 0
0 0

]
X̂(m+n(k−1))

[
C1 0
0 0

]
. . .

. . . X̂(m+n(k−1))

[
Cd 0
0 0

] [
1n ⊗ e1,j 0

0 0

]
.

We caution the reader that the blocks Cj are 2m×2m while the blocks P (X)×ei,j and 1n⊗ei,j
are nk × nk.

Finally, we claim that Γ(n) is closed under addition. Suppose that P (X) and Q(X) are
in Γ(n). Then there exist integers r and s and matrices B1, . . . , Bd ∈ M2r(A) and C1, . . . ,
Cd ∈M2s(A) such that [

P (X) 0
0 0

]
= B0X̂

(r)B1X̂
(r) . . . Bd−1X̂

(r)Bd

and [
Q(X) 0

0 0

]
= C0X̂

(s)C1X̂
(s) . . . Bd−1X̂

(s)Bd.

Then observe that[
P (X) +Q(X) 0

0 0

]
= S

[
B0 0
0 C0

]
X̂(r+s)

[
B1 0
0 C1

]
. . . X̂(r+s)

[
Bd 0
0 Cd

]
S∗

Where

S =

[
1n×n 0n×(n−r) 1n×n 0n×(n−s)

0(r+s−n)×n 0(r+s−n)×(n−r) 0(r+s−n)×n 0(r+s−n)×(s−n)

]
Altogether, we have shown that Γ =

⋃∞
n=1 Γ(n) contains the 1× 1 monomials of degree ≤ d,

is closed under P 7→ P ⊗ Ei,j , and is closed under addition. This implies that Γ contains all
matrix polynomials of degree ≤ d as desired.
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Conclusion to the proof of Theorem 3.4.1. Suppose that G satisfies (2) of the theorem and let
σ : A〈X〉 → A be given as in Lemma 3.4.2. To show that σ is completely positive, choose a
polynomial P (X) ∈Mn(A〈X〉). Let

A0 =

[
0 1
1 0

]
∈M2(A).

Then by Lemma 3.4.6, we can write P (X) in the form[
P (X) 0

0 0

]
= C0(X(2m) +A

(m)
0 )C1(X(2m) +A

(m)
0 ) . . . Cd−1(X(2m) +A

(m)
0 )Cd,

where Cj ∈M2m(A). Thus, by Lemma 3.4.5, we have

σ(2m)[C∗d(X(2m)+A
(m)
0 )C∗d−1 . . . (X

(2m)+A
(m)
0 )C∗0C0(X(2m)+A

(m)
0 ) . . . Cd−1(X(2m)+A

(m)
0 )Cd] ≥ 0,

which implies that σ(n)(P (X)∗P (X)) ≥ 0.
Next, we have shown in Lemma 3.4.2 that σ exponentially bounded by R whenever R > M .

Therefore, σ is a generalized law with rad(σ) ≤M .
It remains to show that the Cauchy transform of σ is the original function G. It follows

from Lemma 3.4.3 that G̃(z) = G̃σ(z) when ‖z‖ < 1/R. If we let z0 = 2iR, then we have
z ∈ B(n)(z0, R) implies that Im z ≥ R+ε for some ε > 0 which implies that z−1 ∈ B(n)(0, 1/R).
Hence, we have G = Gσ on B(z0, R). So by the identity theorem (Theorem 2.9.7), we have
G = G̃σ on the whole matricial upper half-plane.

We now give an analytic characterization of when the generlized law σ is a law, and hence
complete the analytic characterization of the Cauchy-Stieltjes transforms of A-valued laws.

Lemma 3.4.7. Let σ be an A-valued generalized law. Then the following are equivalent.

1. σ is a law.

2. ∆G̃σ(0, 0)[z] = z for all z ∈ A.

3. For each n, lim‖z‖→0 z
−1G̃σ(z) = 1n, where the limit occurs in norm and is taken over

all invertible z.

Proof. We have ∆G̃σ(0, 0)[z] = σ(z) for z ∈ A. We also know by Corollary 1.6.8 that σ is a
law if and only if σ|A = id. This implies that (1) ⇔ (2).

(1) =⇒ (3). If σ is a law, then

z−1G̃σ(z) = z−1σ(n)[z(1−X(n)z)−1] = σ(n)[(1−X(n)z)−1],

which is fully matricial in a neighborhood of zero, and hence (3) holds.
(3) =⇒ (1). Fix an invertible operator z ∈ A. Then we have for scalars ζ that

lim
ζ→0

1

ζ
G̃σ(ζz) = z lim

ζ→0
(ζz)−1G̃σ(ζz) = z.

On the other hand,

lim
ζ→0

1

ζ
G̃σ(ζz) = lim

ζ→0

∞∑
k=0

ζkσ[z(Xz)k] = σ[z].

Therefore, σ[z] = z. Any element of A can be written as a linear combination of invertible
operators and hence σ|A = id, which means that σ is a law.
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We also have the following corollary of Theorem 3.4.1 which is helpful for estimating the
radius of generalized laws.

Corollary 3.4.8. Suppose that σ and τ are A-valued generalized laws and ImGσ(z) ≥ ImGτ (z).
Then

1. Gτ (z)−Gσ(z) is the Cauchy-Stieltjes transform of some generalized law ρ.

2. rad(σ) ≤ rad(τ).

3. For Im z ≥ ε, we have ‖Gσ(z)−Gτ (z)‖ ≤ ‖σ(1)− τ(1)‖/ε.

Proof. (1) Observe that Gτ −Gσ maps H+(A) into H−(A). Moreover, G̃τ − G̃σ extends to be
fully matricial in a neighborhood of 0 in a way which preserves adjoints. Therefore, there is a
generalized law ρ such that Gτ −Gσ = Gρ. Now ρ = τ − σ as maps A〈X〉 → A.

(2) Because ρ is completely positive, we see that

σ(p(X)∗p(X)) ≤ τ(p(X)∗p(X)).

In particular, if p(X) = a0Xa1 . . . Xan, then

‖σ(p(X))‖ ≤ ‖σ(p(X)∗p(X))‖1/2 ≤ ‖τ(p(X)∗p(X))‖1/2 ≤ rad(τ)n‖a0‖ . . . ‖an‖,

so that rad(σ) ≤ rad(τ).
(3) This follows by applying the estimate for Lemma 3.2.7 to Gρ(z).

3.5 The F -Transform

Definition 3.5.1. Let µ be an A-valued law. We define the F -transform

Fµ(z) = Gµ(z)−1.

Lemma 3.5.2. Fµ is a fully matricial function H+(A)→ H+(A).

Proof. Suppose that z ∈ H+(A). If we have Im z ≥ ε, then by Lemma 3.2.3, we have

Im(z −X(n))−1 ≤ −ε
‖z −X(n)‖2

.

By complete positivity of µ and the fact that µ(1) = 1, we have

ImGµ(z) ≤ −ε
‖z −X(n)‖2

.

This implies that Gµ(z) ∈ H−(A) and in particular Gµ(z) is invertible. Moreover, one checks
from Lemma 2.7.2 that inv : H−(A) → H+(A) is fully matricial, and hence Fµ(z) is fully
matricial.

The following characterization of F -transforms will be useful in the later chapters for under-
standing the analytic transforms associated to non-commutative independence. It also serves
as an example of the applications of Theorem 3.4.1. A related characterization of z − Fµ(z)
as the self-energy of some law was given in [PV13, Theorem 5.6] and [Wil17, Corollary 3.3],
while the statement that z − Fµ(z) is the Cauchy-Stieltjes transform of a generalized law was
proved in [PV13, Remark 5.7]. Compare also [SW97, Proposition 3.1] (scalar case), [Jek17,
Proposition 3.9] (by the present author).
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Theorem 3.5.3.

1. If µ is an A-valued law, then there exists a self-adjoint a0 ∈ A and a generalized law σ

such that F
(n)
µ (z) = z − a(n)

0 −G(n)
σ (z).

2. Conversely, if a0 is a self-adjoint element of A and σ is a generalized law, then there

exists an A-valued law µ such that F
(n)
µ (z) = z − a(n)

0 −G(n)
σ (z).

3. We have a0 = µ(X) and σ(a) = µ(XaX)− µ(X)aµ(X) for a ∈ A.

4. We have rad(σ) ≤ 2 rad(µ) and

rad(µ) ≤ 1

2

(
‖a0‖+M +

√
|‖a0‖ −M |2 + 4‖σ(1)‖

)
.

Proof. (1) We want to show that Bµ(z) = z−Fµ(z) has the form a0+Gσ(z) for some generalized
law σ. The first step is to show that H maps H+(A) into H−(A), which is equivalent to showing
that ImFµ(z) ≥ Im z.

Let z ∈ H(n)
+ (A). Let us write X for the left multiplication operator on A〈X〉 ⊗µ A and

σ(b) = 〈(1 ⊗ 1), b(1 ⊗ 1)〉 for b in the C∗-algebra B generated by A〈X〉. Using the identity
Im(b−1) = (b−1)∗(Im b)b−1, we have

− Im(z −X(n))−1 = −(z∗ −X(n))−1[Im(z∗ −X(n))](z −X(n))−1

= (z∗ −X(n))−1 Im(z)(z −X(n))−1.

By complete positivity of µ, we have

− Imµ(n)[(z −X(n))−1] ≥ µ(n)[(z∗ −X(n))−1 Im(z)(z −X(n))−1].

Note that if A ∈Mn(A) is positive and B ∈Mn(B), then µ(n)[(B−µ(n)(B))∗A(B−µ(n)(B))] ≥
0 which impiles that µ(n)[B∗AB] ≥ µ(n)(B)∗Aµ(n)(B). In particular, we have

µ(n)[(z∗ −X(n))−1 Im(z)(z −X(n))−1] ≥ µ(n)[(z∗ −X(n))−1] Im(z)µ(n)[(z −X(n))−1].

Thus, we have shown that

− ImGµ(z) ≥ Gµ(z)∗(Im z)Gµ(z).

Now observe that

ImFµ(z) = ImGµ(z)−1

= −(Gµ(z)∗)−1[ImGµ(z)]Gµ(z)−1

≥ (Gµ(z)∗)−1[Gµ(z)∗(Im z)Gµ(z)]Gµ(z)−1

= Im z.

Therefore, Bµ maps H+(A) into H−(A).

Next, let us analyze the behavior of B̃µ(z) = Bµ(z−1) near zero. Let M = rad(µ). Note
that the series

P (n)(z) =

∞∑
k=0

µ(n)[X(n)(zX(n))k]
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converges for ‖z‖ < 1/M and satisfies

‖P (z)‖ ≤
∞∑
k=0

M(‖z‖M)k =
1

1/M − ‖z‖

We also have
G̃µ(z) = z + zP (z)z.

and thus

B̃µ(z) = z−1 − Fµ(z)

= z−1 − (z + zP (z)z)−1

= z−1 − (1 + P (z)z)−1z−1

=

∞∑
k=0

[−P (z)z]kP (z).

This series converges provided that ‖P (z)z‖ < 1 for which it is sufficient that

‖z‖
1/M − ‖z‖

< 1⇔ ‖z‖ < 1

2M
.

In this case, we have ∥∥∥B̃µ(z)
∥∥∥ ≤ ‖P (z)‖

1− ‖P (z)z‖
≤ 1

1/2M − ‖z‖
.

Thus, the function B̃µ(z) has a fully matricial extension to B(0, 1/2M). Because G̃µ(z∗) =

G̃µ(z)∗, we have B̃µ(z∗) = B̃µ(z)∗. In particular, a0 = B̃µ(0) is self-adjoint. Also, B̃µ(z)−B̃µ(0)
satisfies all the properties of Theorem 3.4.1, so that Bµ(z) − a0 = Gσ(z) for some generalized
law σ with rad(σ) ≤ 2M . Thus, we have proved (1) as well as the first estimate in (4).

(2) Let B(n)(z) = G
(n)
σ (z) + a

(n)
0 . F (z) = z − B(z) and G(z) = F (z)−1. Note that

F : H+(A)→ H+(A) and hence G : H+(A)→ H−(A).
Now consider the behavior of B̃(z) and G̃(z) near zero. Letting M = rad(σ), we have by

Lemma 3.3.3 that

‖B̃(z)‖ ≤ ‖σ(1)‖‖z‖
1−M‖z‖

+ ‖a0‖.

Next, observe that

G̃(z) = (z−1 − B̃(z))−1

=

∞∑
k=0

(zB̃(z))kz,

where the series expansion makes sense provided that ‖B(z)‖‖z‖ < 1. In particular, given our
estimate on ‖B̃(z)‖, we see that G̃(z) has a fully matricial extension to a neighborhood of 0
which satisfies all the properties in Theorem 3.4.1 and therefore G(z) is the Cauchy transform
of some generalized law µ. Moreover, from the power series expansion of G̃(z), we see that
z−1G̃(z)→ 1 as z → 0 and thus by Lemma 3.4.7, µ is a law.

To compute rad(µ), observe that G̃(z) is uniformly bounded on B(0, r) provided that r <
1/M and

r

(
‖σ(1)‖r
1−Mr

+ ‖a0‖
)
< 1.
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The function on the left hand side is strictly increasing on (0, 1/M), and approaches 0 and +∞
at the left and right endpoints of the interval. Hence, there is a unique r∗ ∈ (0, 1/M) satisfying

r∗
(
‖σ(1)‖r∗

1−Mr∗
+ ‖a0‖

)
= 1.

and rad(µ) ≤ 1/r∗. To solve for r∗, we change variables to R = 1/r∗ and obtain a quadratic
equation in R. Because r∗ was the unique solution in (0, 1/M), we know that R must be the
unique solution in (M,+∞) for the quadratic equation, and therefore must equal the larger
root of this quadratic. After some computation, we obtain

R =
1

2

(
‖a0‖+M +

√
(‖a0‖ −M)2 + 4‖σ(1)‖

)
.

This proves the second estimate in (4).
It remains to prove claim (3). For sufficiently small z ∈ A, we have

B̃µ(z) = P (z)− P (z)zP (z) +O(‖z‖2)

= µ(X) + µ(XzX)− µ(X)zµ(X) +O(‖z‖2),

while on the other hand

B̃µ(z) = a0 + G̃σ(z)

= a0 + σ(z) +O(‖z‖2).

Thus, a0 = µ(X) and σ(z) = µ(XzX)− µ(X)zµ(X) as desired.

The quantity Varµ(a) := µ(XaX)− µ(X)aµ(X) will be significant in the coming chapters.
As a consequence of what we have just shown, Varµ is a completely positive A → A. This Varµ
is related to the variance in classical probability theory. Indeed, if A = C and µ is a measure
on the real line, then Varµ is a map C→ C which is simply multiplication by a positive scalar,
and this positive scalar is the classical variance of µ.

3.6 Convergence in Moments

Definition 3.6.1. If σ is a generalized law, then we define the kth moment of σ as the multi-
linear form

Momk(σ)[w0, . . . , wk] = σ(w0Xw1 . . . Xwk)

or equivalently

Momk(σ) = ∆k+1G̃σ(0, . . . , 0).

Definition 3.6.2. Let σn and σ be generalized laws. We say that σn → σ in moments if

lim
n→∞

‖Momk(σn)−Momk(σ)‖# = 0 for every k,

where ‖·‖# is the completely bounded norm for multilinear forms. Similarly, we say that {σn}
is Cauchy in moments if {Momk(σn)} is Cauchy for each k.

Definition 3.6.3. We denote by ΣM (A) the set of A-valued laws with rad(µ) ≤M . We denote
by Σgen

M,K(A) the set of A-valued generalized laws σ with rad(σ) ≤M and ‖σ(1)‖ ≤ K.
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Lemma 3.6.4. If {σn} in Σgen
M,K(A) is Cauchy in moments, then it converges in moments.

Also, ΣM (A) is a closed subset of Σgen
M,1(A) with respect to the convergence in moments.

Proof. Clearly, the multilinear forms Momk(σn) converge to some multilinear form Λk. We can
define σ : A〈X〉 → A by σ(w0Xw1 . . . Xwk) = Λk(w0, . . . , wk). Then σn[f(X)] → σ[f(X)] for
each f(X) ∈ A〈X〉 and hence σ is completely positive and exponentially bounded by M . Also,
‖σ(1)‖ ≤ K since ‖σn(1)‖ ≤ K. Therefore, σ is a generalized law in Σgen

M,K(A) and σn → σ in
moments.

To show that ΣM (A) is closed, note that the property of σ : A〈X〉 → A being a unital
A-A-bimodule map is preserved under limits.

Proposition 3.6.5. If r < 1/M and σ, τ ∈ Σgen
M,K(A), define

dr(σ, τ) =

∞∑
k=0

rk+1‖Momk(σ)−Momk(τ)‖# = d0,r(G̃σ, G̃τ ).

Then we have the following.

1. dr is a metric.

2. The metrics dr for different values of r are uniformly equivalent.

3. {σn} ⊆ Σgen
M,K is convergent / Cauchy in moments if and only if it convergent / Cauchy

in dr.

4. Σgen
M,K(A) is complete with respect to dr.

Proof. Observe that dr(σ, τ) = d0,r(G̃σ, G̃τ ). It follows from Lemma 3.3.5 that F = {G̃σ : σ ∈
Σgen
M,K(A)} is a uniformly locally bounded family of fully matricial functions on B(0, 1/M) and

that rad(0,F) = 1/M . Therefore, claims (1) and (2) follow from Theorem 2.9.6.
(3) Note that

‖Momk(σ)−Momk(τ)‖# ≤
1

rk
dr(σ, τ).

Hence, convergence or Cauchyness in dr implies convergence or Cauchyness in moments. Con-
versely, using standard geometric series estimates,

dr(σ, τ) ≤
N−1∑
k=0

rk‖Momk(σ)−Momk(τ)‖# +
(rM)N

1− rM

and hence convergence or Cauchyness in moments implies convergence or Cauchyness in dr.
(4) This follows from (3) and Lemma 3.6.4.

Proposition 3.6.6.

1. The collection GM,K = {Gσ : σ ∈ Σgen
M,K(A)} is a uniformly locally bounded family of fully

matricial functions on H+(A).

2. For each z ∈ H+,ε(A) we have rad(z,G) ≥ ε.

3. The metrics dz,r(Gσ, Gτ ) on G are uniformly equivalent to the metrics dr(σ, τ).

4. GM,K with the topology of uniform local convergence is homeomorphic to Σgen
M,K with the

topology of convergence in moments.
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Proof. (1) and (2) follow from Lemma 3.2.7.
To prove (3), note that the metrics dz,r are all equivalent to each other by Theorem 2.9.6.

Moreover, note that all the elements of B(3iM,M) are invertible and inv(B(3iM,M)) ⊆
B(0, 1/2M), so that

d3iM,M (Gσ, Gτ ) ≤ d0,1/2M (G̃σ, G̃τ ) = d1/2M (σ, τ).

Thus, d3iM,M (Gσ, Gτ ) can be estimated above by d1/2M (σ, τ). For the converse direction, note
that inv(B(1/2iM, 1/8M)) ⊆ B(2iM, 2M/3) and hence

d1/2iM,1/8M (G̃σ, G̃τ ) ≤ d2iM,2M/3(Gσ, Gτ ).

By Theorem 2.9.6, the metric d1/2iM,1/8M is equivalent to dr(σ, τ), and thus dr(σ, τ) can be
estimated from above by d2iM,2M/3(Gσ, Gτ ).

(4) is an immediate consequence of (3).

3.7 Problems and Further Reading

Problem 3.1.

1. Let µ be a compactly supported measure on R. Let dν(t) = t2 dµ(t). Show that

gµ(z) =
1

z
+

1

z2

∫
t dµ(t) +

1

z2
gν(z).

2. Let µ be an A-valued law. Show that there exists a generalized law ν such that

G(n)
µ (z) = z−1 + z−1µ(X)(n)z−1 + z−1G(n)

ν (z)z−1.

Problem 3.2. Let F1, F2, F3 : H+(A)→ H+(A) be fully matricial functions with F3 = F1 ◦F2.
Prove that if two out of the three Fj ’s are F -transforms of A-valued laws, then so is the third.
In particular, F -transforms form a semigroup under composition.

Problem 3.3. Suppose that Fµ3
= Fµ1

◦ Fµ2
. Show that

1

c
rad(µ3) ≤ max(rad(µ1), rad(µ2)) ≤ c rad(µ3)

for some constant c > 0 independent of µj .

Problem 3.4. Prove that the metric dr(σ, τ) on Σgen
M,K(A) is uniformly equivalent to the metric

sup
Im z≥ε

‖Gσ(z)−Gτ (z)‖.

Problem 3.5. Let σn and σ be in Σgen
M,K(A). Show that the following are equivalent:

1. σn(f(X))→ σ(f(X)) in A for every polynomial f(X) ∈ A〈X〉.

2. Gσn(z)→ Gσ(z) for every z ∈ H+(A).

Problem 3.6. Let (B, τ) be a tracial von Neumann algebra and A be a von Neumann sub-
algebra. Let E : B → A be the conditional expectation. Let X ∈ B be self-adjoint and let

G(z) = E[(z −X(n))−1] for z ∈ H(n)
+ (A).
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1. If z, z′ ∈ H(n)
+,ε(A), show that

‖G(z)−G(z′)‖2 ≤
1

ε2
‖z − z′‖2.

2. Let GTr be the set of Cauchy transforms obtained in this way. Show that GTr is compact
in the topology of pointwise σ-WOT convergence.

3. Show that this topology on GTr is metrizable provided that A is separable in WOT.



Chapter 4

Non-Commutative Independences

4.1 Introduction

Free independence was discovered by Voiculescu [Voi86] and further developed by Speicher
[Spe94]. His key insight was that the free product operation on groups and the corresponding
operator algebras could be viewed as a non-commutative version of probabilistic independence.
The analogy between the classical and free theories included the following elements:

1. Rule for specifying mixed moments: To say that algebras B1, . . . , Bn are freely indepen-
dent specifies rule for determining the mixed moments of variables in the larger algebra
which they generate.

2. Product space construction: Any two algebras could be joined in an independent way. In
ordinary probability theory, this is the role of the product measure spaces, corresponding
to a tensor product of the L2 spaces, on which the two individual algebras act by multi-
plication on first and second coordinate. In free probability theory, products of algebras
act on the free product of the underlying Hilbert spaces, a construction related to Fock
spaces in physics.

3. Convolution operation and analytic transforms: In ordinary probability theory, the law of
a sum of independent random variables is the convolution of the two individual laws, and
the convolution can be computed using the Fourier transform of the measure. Given (1),
the law of the sum of independent random variables is determined by the individual laws,
and so “free convolution” is well-defined. Voiculescu found that the R-transform played a
similar role in free probability theory; namely, the R transform of the “free convolution”
of two laws is the sum of the R-transforms.

This theory was adapted to the operator-valued setting in [Voi95], [Spe98].
Another type of non-commutative independence, called Boolean independence, was intro-

duced into non-commutative probability by Speicher and Woroudi [SW97], based on previous
work by physicists. This independence had a rule for specifying mixed moments, a product
space construction, and a convolution operation. For operator-valued Boolean independence,
see [Pop09], [PV13, §2], [BPV13].

Finally, monotone independence was discovered by Muraki [Mur97], [Mur00], [Mur01], and
adapted to the operator-valued setting by Popa [Pop08a] and Hasebe and Saigo [HS14]. There
was a parallel theory of moment computations, product spaces, and analytic transforms. Unlike
free and Boolean independence, monotone independence is sensitive to the order of algebras.

61
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Thus, the monotone convolution operation is not commutative and it corresponds to composi-
tion rather than addition of analytic transforms.

After the discovery of several types of independence, Speicher formulated axioms for inde-
pendences which lead to a natural commutative binary product operation, and he showed that
tensor, free, and Boolean were the only three possilibities [Spe97]; Ben Ghorbal and Schürmann
proved related results in the framework of category theory [BS02]. When the product is no
longer required to be commutative, there are exactly two more possibilities, monotone indepen-
dence and its mirror image anti-monotone independence, as proved by Muraki in 2003 [Mur03].
This in some sense classified the possible notions of independence. The analogous results in the
operator-valued setting have not yet been studied.

Here we will focus on operator-valued free, Boolean, monotone, and anti-monotone inde-
pendence. We exclude classical or tensor independence because it does not adapt well to the
A-valued setting if A is not commutative, and because the other types of independence have
closer similarities with each other. As much as possible, we will present theories of these four
types in parallel.

4.2 Independence of Algebras

Definition 4.2.1 (Free independence). Let (B, E) be an A-valued probability space. Then
subalgebras B1, . . . , BN containing A are said to be freely independent if we have

E[b1 . . . bk] = 0

whenever bj ∈ Bij with E[bj ] = 0, provided that the consecutive indices ij and ij+1 are distinct.

Definition 4.2.2. Let B ⊇ A be C∗-algebras. We say that C is a (non-unital) A-∗-subalgebra
of B if B if B is closed under addition, multiplication, and adjoints, and if AB ⊆ B.

Definition 4.2.3 (Boolean independence). Let (B, E) be an A-valued probability space. Then
A-subalgebras B1, . . . , BN are said to be Boolean independent if we have

E[b1 . . . bk] = E[b1] . . . E[bk]

whenever bj ∈ Bij , provided that the consecutive indices ij and ij+1 are distinct.

Definition 4.2.4 (Monotone independence). Let (B, E) be an A-valued probability space.
Then A-subalgebras B1, . . . , BN are said to be monotone independent if we have

E[b1 . . . bk] = E[b1 . . . br−1E[br]br+1 . . . bk]

whenever bj ∈ Bij , provided that the index ir is strictly greater than the consecutive indices
ir−1 and ir+1 (if r = 1, we drop the condition on ir−1 and similarly for the case r = k).

Definition 4.2.5 (Anti-monotone independence). Let (B, E) be an A-valued probability space.
Then A-subalgebras B1, . . . , BN are said to be anti-monotone independent if we have

E[b1 . . . bk] = E[b1 . . . br−1E[br]br+1 . . . bk]

whenever bj ∈ Bij , provided that the index ir is strictly less than the consecutive indices ir−1

and ir+1 (if r = 1, we drop the condition on ir−1 and similarly for the case r = k).

Remark 4.2.6. Free and Boolean independence are unchanged if we reorder the algebras B1,
. . . , BN . However, monotone and anti-monotone independence are sensitive to order. Also, B1,
. . . , BN are anti-monotone independent if and only if Bn, . . . , B1 are monotone independent.
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The definition of independence provides enough information to evaluate the expectation of
any element of the A-algebra generated by B1, . . . , BN . Here and in the rest of this chapter, we
state the result for all types of independence simultaneously. When we write “free / Boolean /
monotone / anti-monotone,” we mean that there are four versions of the theorem, one for each
type of independence.

Lemma 4.2.7. Suppose that B1, . . . , BN are free / Boolean / monotone / anti-monotone
independent A-subalgebras, and assume in the free case that they are unital. If bj ∈ Bij for
j = 1, . . . , k, then E[b1 . . . bk] is uniquely determined by E|B1

, . . . , E|BN .

Proof for the free case. Let C be the formal A-algebra generated by B1, . . . , BN , that is, the
span of all strings of the form b1 . . . bk where bj and bj+1 come from distinct algebras. Let

D = A+ Span{b1 . . . bk : E[bj ] = 0, bj ∈ Bij , ij 6= ij+1}.

We claim that C = D.
We must show that every string b1 . . . bk can be represented as a linear combination of the

terms in D. We prove this by induction on k, the base case k = 0 being trivial. In the inductive
step, let k ≥ 1 and consider a string b1 . . . bk where bj ∈ Bij and ij 6= ij+1. We can write
bj = cj + aj where aj = E[bj ] and cj = bj − aj has expectation zero. Then

b1 . . . bk = (c1 + a1) . . . (ck + ak).

We expand the right hand side into 2k terms using the distributive property. The first term
c1 . . . ck has the desired form. We claim that each of the other terms can be expressed as a
word in C with length less than k (so that we can apply the inductive hypothesis). Each term
is a product of some cj ’s and some aj ’s, but we can group each aj together with all the terms
before or after until we reach one of the cj ’s. Then if two adjacent elements come from the
same algebra Bi, then we can group them together into one term. After applying as many such
regrouping operations as possible, we have expressed this term as a string of the form b′1 . . . b

′
k′

with k′ < k and the terms b′j coming from different Bij ’s with ij+1 6= ij . Then by the inductive
hypothesis, this term is in D.

This implies that every c ∈ C can be expressed as the sum of a ∈ A plus a linear combination
of terms of the form b1 . . . bk, where E[bj ] = 0, bj ∈ Bij , and ij 6= ij+1. This decomposition
was reached using purely algebraic operations and knowledge of E|Bi for each i. Using freeness,
each term of the form b1 . . . bk has expectation zero. Thus, E[c] = a.

Proof for the Boolean case. Starting with a string b1 . . . bk, we first group and relabel the terms
so that any two consecutive terms come from different algebras. Then by definition of Boolean
independence E[b1 . . . bk] = E[b1] . . . E[bk].

Proof for the (anti-)monotone case. In the monotone case, we proceed by induction on the
length k of the string b1 . . . bk, where the base case k = 1 is trivial. By regrouping the terms if
necessary, assume that consecutive terms come from different algebras. Then choose an index
j such that ij is maximal. By monotone independence,

E[b1 . . . bk] = E[b1 . . . bj−1E[bj ]bj+1 . . . bk].

Since E[bj ] ∈ A, this can be represented as a string of length ≤ k − 1, to which we apply the
induction hypothesis.

The anti-monotone case follows by symmetry from the monotone case.
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4.3 Construction of Product Spaces

In classical probability theory, one constructs the product (Ω, P ) = (Ω1 ⊗ Ω2, P1 ⊗ P2) of two
probability spaces (Ω1, P1) and (Ω2, P2). The algebras B1 = L∞(Ω1, P1) and B2 = L∞(Ω2, P2)
embed into B = L∞(Ω, P ) as subalgebras which are classically independent, that is, E[b1b2] =
E[b1]E[b2]. The algebra B is thus a certain completed tensor product of B1 and B2 with the
state

∫
·P being the tensor product of the two states P1 and P2. Moreover, the Hilbert space

L2(Ω, P ) is the Hilbert-space tensor product of L2(Ω1, P1) and L2(Ω2, P2).
Similarly, in non-commutative probability, we seek to a way to independently join given

algebras B1, . . . , BN . We construct the joint algebra by first constructing a joint Hilbert space,
in the same way that classical independence arises from tensor products of Hilbert spaces.

More precisely, our goal in this section is to prove the following theorem. For the sake
of brevity, we state the theorem only once for all four types of independence studied here.
Rather than starting with initial algebras BN , we will prove independence for all of B(Hj) and
comment on the case of other algebras in the next section.

Theorem 4.3.1. Suppose that (H1, ξ1), . . . , (HN , ξN ) are Hilbert A-A-bimodules and ξj is an
A-central unit vector in Hj. Denote Ej [b] = 〈ξj , bξj〉 for b ∈ B(Hj).

Then there exists a Hilbert A-A-bimodule H, an A-central unit vector ξ, and injective (non-
unital) ∗-homomorphisms ρj : B(Hj) → B(H) such that the following hold, where we denote
E[b] = 〈ξ, bξ〉:

1. We have E[ρj(b)] = Ej [b] for b ∈ B(Hj).

2. The algebras ρ1(B(H1)), . . . , ρn(B(Hn)) are free / Boolean / monotone / anti-monotone
independent with respect to E.

3. If bj ∈ B(Hj) with Ej [bj ] = 0, then∥∥∥∥∥∥
N∑
j=1

ρj(bj)

∥∥∥∥∥∥ ≤ 2

 N∑
j=1

‖bj‖2
1/2

+ max
j∈[N ]

‖bj‖.

The space (H, ξ) and the maps ρj can be defined through the explicit constructions below (Def-
inition 4.3.3, 4.3.4, 4.3.5, 4.3.6).

We begin with an elementary lemma before we divide the construction and proof into cases.
References for Theorem 4.3.1 are included in the treatment of cases below.

Lemma 4.3.2. Let H be a Hilbert A-A-bimodule and let ξ ∈ H be an A-central unit vector.

1. Aξ and K := {ζ : 〈ξ, ζ〉 = 0} are A-A Hilbert bimodules.

2. H = Aξ ⊕K.

3. Aξ is isomorphic as a Hilbert A-A-bimodule to the bimodule A with the inner product
given by 〈a1, a2〉 = a∗1a2.

Proof. Note that Aξ is an A-A-bimodule because it is a left A-module and aξ = ξa. Moreover,
K is a A-A-bimodule because if a ∈ K, then

〈ξ, ζa〉 = 〈ξ, ζ〉a = 0



4.3. CONSTRUCTION OF PRODUCT SPACES 65

and
〈ξ, aζ〉 = 〈a∗ξ, ζ〉 = 〈ξa∗, ζ〉 = a〈ξ, ζ〉 = 0.

Moreover, any ζ ∈ H can be written as

ζ = 〈ξ, ζ〉ξ + (ζ − 〈ξ, ζ〉ξ),

where the first term is in Aξ and the second term is in K because

〈ξ, ζ − 〈ξ, ζ〉ξ〉 = 〈ξ, ζ − ξ〈ξ, ζ〉〉 = 〈ξ, ζ〉 − 〈ξ, ξ〉〈ξ, ζ〉 = 0.

Therefore, H = Aξ⊕K. Because this direct sum decomposition holds, the individual terms Aξ
and K must be closed subspaces and hence are Hilbert A-A-bimodules.

Finally, we can define a map φ : A → Aξ by a 7→ aξ. This map is clearly surjective. Using
the fact that ξ is A-central, one checks that this map preserves the inner product and is an
isomorphism of Hilbert A-A-bimodules.

The Free Case

The estimate 4.3.1 (3) in the scalar-valued free case is due to [Voi86, Lemma 3.2].

Definition 4.3.3. Let H1, . . . , HN be Hilbert A-A-bimodules with a central unit vectors ξ1,
. . . , ξN , and write Kj = {ζ ∈ Hj : 〈ξj , ζ〉 = 0} and Hj = Aξj ⊕Kj . We define the free product
of (H1, ξ1), . . . , (HN , ξN ) as the pair (H, ξ), where

H = Aξ ⊕
⊕
k≥1

⊕
j1,...,jk∈[N ]
jr 6=jr+1

Kj1 ⊗A · · · ⊗A Kjk ,

as a Hilbert A-A-bimodule, where Aξ is a copy of the trivial A-A-bimodule A and ξ = 1.

In order to define ρj : B(Hj)→ B(H), we observe that by reindexing the terms in the direct
sum and applying the distributive property of tensor products

H ∼= (Aξ ⊕Kj)⊗A

A⊕⊕
k≥1

⊕
j1,...,jk∈[N ]
jr 6=jr+1;j1 6=j

Kj1 ⊗A · · · ⊗A Kjk



∼= Hj ⊗A

A⊕⊕
k≥1

⊕
j1,...,jk∈[N ]
jr 6=jr+1;j1 6=j

Kj1 ⊗A · · · ⊗A Kjk

 .

One the right hand side, it is easy to see how B(Hj) acts by left-multiplication. This defines a
∗-homomorphism ρj : B(Hj)→ B(H) (which is unital in this case).

Proof of Theorem 4.3.1, free case.
(1) By construction ρj(b) maps the direct summand Aξ ⊕Kj into itself, and this subspace

is isomorphic to Hj except that ξj is replaced by ξ.
(2) Let k ≥ 1, and consider a product of terms ρj1(b1), . . . , ρjk(bk) where Ejr (br) = 0 for

each r. We claim that

ρj1(b1) . . . ρjk(bjk)ξ ∈ Kj1 ⊗A · · · ⊗A Kjk ,
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which we will prove by induction on k. In the case k = 1, we express bj1ξj1 in Hj1 as aξj1 + ζ,
where ζ ∈ Kj1 and the coefficient a = 〈ξj1 , bj1ξj1〉. But by assumption a = 0, so that bj1ξj1 ∈
Kj1 . For k > 1, we know by inductive hypothesis that

ζ := ρj2(b2) . . . ρjk(bjk)ξ ∈ Kj2 ⊗A · · · ⊗A Kjk .

This sits inside the direct summand

Kj2 ⊗A · · · ⊗A Kjk ⊆ (A⊕Kj1)⊗A Kj2 ⊗A · · · ⊗A Kjk . ⊆ H

Because b1 maps ξj1 into Kj1 , we know that ρj1(b1) maps ζ into Kj1 ⊗A · · · ⊗A Kjk as desired.
Therefore, we have ρj1(b1) . . . ρjk(bjk)ξ ∈ Kj1 ⊗A · · · ⊗A Kjk , and hence

E[ρj1(b1) . . . ρjk(bjk)] = 〈ξ, ρj1(b1) . . . ρjk(bjk)ξ〉 = 0,

which demonstrates free independence.
(3) Consider an operator of the form

∑n
j=1 xj , where xj = ρj(bj) and Ej [bj ] = 0. Let

Mj ⊆ H be the submodule consisting of tensor products where the first index is j, that is,

Mj =
⊕
k≥1

⊕
j2,...,jk∈[N ]
j 6=j2 6=j3 6=...

Kj ⊗A Kj2 ⊗A · · · ⊗A Kjk .

Note that

H = Aξ ⊕
n⊕
j=1

Mj .

SinceMj is a direct summand of H, there is a projection pj ∈ B(H) ontoMj . Let xj = ρj(bj)
and write

N∑
j=1

xj =

N∑
j=1

(1− pj)xj(1− pj) +

N∑
j=1

pjxj(1− pj) +

N∑
j=1

(1− pj)xjpj +

N∑
j=1

pjxjpj .

Observe that (1−pj)xj(1−pj) = 0. Indeed, if ζ is in the range of 1−pj , then ζ only contains
terms in the tensor products where the first term is not j. Then using similar reasoning as in
part (2), since E[xj ] = 0, we have xjζ ∈Mj , and hence (1− pj)xjζ = 0.

Next, because the elements pjxj(1− pj) have orthogonal ranges, we have as a consequence
of Observation 1.2.7 that∥∥∥∥∥∥

N∑
j=1

pjxj(1− pj)

∥∥∥∥∥∥ ≤
 N∑
j=1

‖pjxj(1− pj)‖2
1/2

≤

 N∑
j=1

‖xj‖2
1/2

.

Similarly, ∥∥∥∥∥∥
N∑
j=1

(1− pj)xjpj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
N∑
j=1

pjx
∗
j (1− pj)

∥∥∥∥∥∥ ≤
 N∑
j=1

‖xj‖2
1/2

.

Finally, again using orthogonality of the pj ’s, we have∥∥∥∥∥∥
N∑
j=1

pjxjpj

∥∥∥∥∥∥ = max
j∈[N ]

‖pjxjpj‖ ≤ max
j∈[N ]

‖xj‖.
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Thus, ∥∥∥∥∥∥
N∑
j=1

xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
N∑
j=1

pjxj(1− pj)

∥∥∥∥∥∥+

∥∥∥∥∥∥
N∑
j=1

(1− pj)xjpj

∥∥∥∥∥∥+

∥∥∥∥∥∥
N∑
j=1

pjxjpj

∥∥∥∥∥∥
≤ 2

 N∑
j=1

‖xj‖2
1/2

+ max
j∈[N ]

‖xj‖

as desired.

The Boolean Case

A version of the following construction was done in the scalar case by [Ber06, §2]. The operator-
valued case was done in [PV13, Remark 2.3].

Definition 4.3.4. Let H1, . . . , HN be Hilbert A-A-bimodules with a central unit vectors ξ1,
. . . , ξN , and write Kj = {ζ ∈ Hj : 〈ξj , ζ〉 = 0} and Hj = Aξj ⊕Kj .

We define the Boolean product of (H1, ξ1), . . . , (HN , ξN ) as the pair (H, ξ), where

H = Aξ ⊕
N⊕
j=1

Kj .

To define the maps ρj , we write H in the form

H = Hj ⊕
⊕
k 6=j

Kk.

If b ∈ B(Hj), then we define ρj(b) to act by b on the first summand and by zero on other
summands.

Proof of Theorem 4.3.1, Boolean case.
(1) This is a direct computation from the construction.
(2) Let k ≥ 1, and consider a product of terms ρj1(b1), . . . , ρjk(bk). We claim that

ρj1(b1) . . . ρjk(bk)ξ = Ej1 [b1] . . . Ejk [bk]ξ + ζ,

where ζ ∈ Kj1 , and we will prove this by induction. The base case k = 1 is immediate. Now
suppose k > 1 and note by induction hypothesis

ζ := ρj2(b2) . . . ρjk(bk)ξ = Ej2 [b2] . . . Ejk [bk]ξ + ζ ′

with ζ ′ ∈ Kj2 . Since j2 6= j1, we have ρj1(b1)ζ ′ = 0. Meanwhile, if we set a = Ej2 [b2] . . . Ejk [bk],
then

ρj1(b1)ζ = ρj1(b1)aξ = 〈ξj1 , b1aξj1〉ξ + ζ,

where ζ ∈ Kj1 by virtue of the construction of ρj1(b1) and the orthogonal decomposition of Hj1
into Aξj1 and Kj1 . But note that

〈ξj1 , b1aξj1〉ξ = 〈ξj1 , b1ξj1a〉ξ = 〈ξj1 , b1ξj1〉aξ = Ej1 [b1]Ej2 [b2] . . . Ejk [bk]ξ,
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which completes the induction step. It follows from this claim that

E[ρj1(b1) . . . ρjk(bk)] = 〈ξ, ρj1(b1) . . . ρjk(bk)ξ〉
= 〈ξ, Ej1 [b1] . . . Ejk [bk]ξ〉+ 〈ξ, ζ〉
= Ej1 [b1] . . . Ejk [bk],

which demonstrates Boolean independence.
(3) Consider an operator of the form

∑N
j=1 xj , where xj = ρj(bj) and Ej [bj ] = 0. Let

pj ∈ B(H) denote the projection onto Kj . One checks using similar reasoning as in part (2)
that (1− pj)xj(1− pj) = 0 and hence that

n∑
j=1

xj =

n∑
j=1

pjxj(1− pj) +

n∑
j=1

(1− pj)xjpj +

n∑
j=1

pjxjpj .

The proof then proceeds exactly as in the free case, using the fact that the pj ’s have orthogonal
ranges.

The (Anti-)Monotone Case

The following construction is due to [Mur00, §2] in the scalar-valued case and a version be
found in [Ber05]. The operator-valued case is due to [Pop08a, §4].

Definition 4.3.5. Let H1, . . . , HN be Hilbert A-A-bimodules with a central unit vectors ξ1,
. . . , ξN , and write Kj = {ζ ∈ Hj : 〈ξj , ζ〉 = 0} and Hj = Aξj ⊕Kj .

We define the monotone product as the pair (H, ξ), where

H = Aξ ⊕
N⊕
k=1

⊕
N≥j1>j2>···>jk≥1

Kj1 ⊗A · · · ⊗A Kjk .

To define the maps ρj , we write H in the form

H = (Aξ ⊕Kj)⊗A

A⊕⊕
k≥1

⊕
j>j1>···>jk

Kj1 ⊗A · · · ⊗A Kjk


⊕
⊕
k≥1

⊕
j1>j2>···>jk

j1>j

Kj1 ⊗A · · · ⊗A Kjk .

Let b ∈ B(Hj). The summand in the top line is the tensor product of Hj with another A-A-
bimodule, and we define the action of ρj(b) by its left action on Hj . On the bottom summand,
we define the action of ρj(b) to be zero.

Proof of Theorem 4.3.1, monotone case. (1) The space H contains Aξ ⊕ Kj ∼= Hj as a direct
summand, and the action of ρj(b) on this subspace is the same as the action of b on Hj , with
ξ corresponding to ξj .

(2) In order to show monotone independence, we must show that

E[ρps(bs) . . . ρp1(b1)ρj(b)ρq1(b′1) . . . ρqt(b
′
t)] = E[ρps(bs) . . . ρp1(b1)Ej [b]ρq1(b′1) . . . ρqt(b

′
t)],

provided that j > p1 if s > 0 and j > q1 if t > 0, where b ∈ B(Hj) and bi ∈ B(Bpi) and
b′i ∈ B(Hqi), where Ej [b] denote the multiplication operator on H by Ej [b] ∈ A. This claim is
equivalent to

〈ρp1(b∗1) . . . ρps(b
∗
s)ξ, (ρj(b)− Ej [b])ρq1(b′1) . . . ρqt(b

′
t)ξ〉 = 0.
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Now we write

a = Ej [b]

ζ = ρp1(b∗1) . . . ρps(b
∗
s)ξ

ζ ′ = ρq1(b′1) . . . ρqt(b
′
t)ξ,

and our goal is to show that 〈ζ, ρj(b)ζ ′〉 = 〈ζ, aζ ′〉.
We claim first that

ζ, ζ ′ ∈ N := Aξ ⊕
⊕
k≥1

⊕
j>j1>j2>···>jk

Kj1 ⊗A · · · ⊗A Kjk .

This is clear for ζ if s = 0 and hence ζ = ξ. On the other hand, if s > 0, this follows because
the image of ρ1(b∗1) is contained in

A⊕
⊕
k≥1

⊕
p1≥j1>j2>···>jk

Kj1 ⊗A · · · ⊗A Kjk ⊆ N ,

and p1 < j. The argument for ζ ′ is identical.

By construction ρj(y) maps N into (A⊕Kj)⊗N . However, since Ej [b− a] = 0, ρj(b− a)
maps the space N into

Kj ⊗N =
⊕
k≥0

⊕
j>j1>j2>···>jk

Kj ⊗A Kj1 ⊗A · · · ⊗A Kjk .

Moreover, Kj ⊗N is orthogonal to N by construction and hence

〈ζ, ρj(b− a)ζ ′〉 = 0.

Finally, note that ρj(a)|N = a|N and hence 〈ζ, ρj(b)ζ ′〉 = 〈ζ, aζ ′〉 as desired.

(3) Consider an operator of the form
∑N
j=1 xj , where xj = ρj(bj) and Ej [bj ] = 0. Let

Mj ⊆ H be the submodule consisting of tensor products where the first index is j, that is,

Mj =
⊕
k≥1

⊕
j>j2>···>jk

Kj ⊗A Kj2 ⊗A · · · ⊗A Kjk .

Note that H = Aξ ⊕
⊕N

j=1Mj , and let pj be the projection onto Mj . Moreover, xj maps the
orthogonal complement of Mj into Mj and hence (1− pj)xj(1− pj) = 0. The argument then
proceeds exactly the same as in the free case.

For the anti-monotone case, the construction and the proof of Theorem 4.3.1 are exactly
symmetrical to the monotone case. For example, the construction of the Hilbert A-A-module
is as follows.

Definition 4.3.6. With (Hj , ξj) as above, we define the anti-monotone product as the pair
(H, ξ), where

H = Aξ ⊕
N⊕
k=1

⊕
1≤j1<j2>···>jk≥1

Kj1 ⊗A · · · ⊗A Kjk .



70 CHAPTER 4. NON-COMMUTATIVE INDEPENDENCES

4.4 Products of Algebras

To define the product of non-commutative probability spaces (B1, E1), . . . , (BN , EN ), we apply
the above construction to (Hj , ξj) = (Bj ⊗Ej A, 1 ⊗ 1). Then we define the product algebra
B to be the C∗-subalgebra of B(H) generated by A and ρj(Bj) for j = 1, . . . , N , with the
expectation E given by the inner product with ξ ∈ H.

There are two technical points we should comment on here. The first is faithfulness of the
representation. If the representation of Bj on Bj ×Ej A is faithful, then the maps Bj → B are
injective and the representation of B on H is faithful. Moreover, one can show that Bξ is dense
in H, so that H ∼= B ⊗E A.

The second issue is that the inclusions ρj : Bj → B are not unital (except in the free
case). Some authors deal with this by framing non-commutative probability theory in terms of
non-unital algebras from the outset. Another option is to consider unital algebras Bj , but to
assume that each Bj has a non-unital A-subalgebra Bj,0 with Bj = Bj,0⊕A as A-A-bimodules
(the direct sum is not necessarily orthogonal). We can then construct the non-unital product
algebra B0 of the algebras Bj,0 and let B = B0 ⊕ A. Then one obtains unital inclusions of Bj
into B.

However, we will not be too concerned about these issues in the rest of these notes, since we
will focus on the computation of moments rather than the properties of the product operations
on C∗ algebras.

4.5 Associativity

Lemma 4.5.1. Each of the four product operations for pairs (H, ξ) described in Definitions
4.3.3, 4.3.4, 4.3.5, 4.3.6 is associative in that sense that if C is one of these product operations,
then we have natural isomorphisms

C3
j=1(Hj , ξj) ∼= ((H1, ξ1)C(H2, ξ2))C(H3, ξ3)

∼= (H1, ξ1)C((H2, ξ2)C(H3, ξ3)).

Moreover, the inclusion maps ρj : B(Hj)→ B(H) are equivalent in all three ways of expressing
the product space.

The argument here is a straighforward rearrangement of the summands in the product
space, using the distributive and associative properties of tensor products. Let us describe the
proof of the first equality in the monotone case and leave the others as exercises for the reader.

Proof for the monotone case. We can write

(H1, ξ1)C(H2, ξ2) = Aξ′ ⊕K′,

where

K′ =
⊕
k≥1

⊕
2≥j1≥···≥jk≥1

Kj1 ⊗A · · · ⊗A Kjk

= K1 ⊕K2 ⊕K2 ⊗K1.
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Note that

((H1, ξ1)C(H2, ξ2))#(H3, ξ3) = Aξ ⊕K′ ⊕K3 ⊕K3 ⊗A K′

= Aξ ⊕
⊕
k≥1

⊕
3≥j1>···>jk≥1

Kj1 ⊗A · · · ⊗A Kjk

= C3
j=1(Hj , ξj).

It is easy to verify that the inclusions B(Hj)→ B(H) are the same for either decomposition of
the product space.

As a corollary, we have the following method for checking independence of subalgebras.

Lemma 4.5.2. For free, Boolean, monotone, and anti-monotone independence, the following
holds. Let B1, B2, and B3 be A-subalgebras of (B, E), and assume in the free case that they are
unital. The following are equivalent:

1. B1, B2, and B3 are independent.

2. B1 and B2 are independent, and B1 ∨ B2 and B3 are independent.

Here B1 ∨ B2 denotes the A-subalgebra generated by B1 and B2.

Proof. Suppose (1) holds. By Lemma 4.2.7, (1) uniquely determines the expectation of elements
of B1∨B2∨B3 in terms of E|Bj . Thus, rather than examining all possible algebras B containing
independent copies of B1, B2, and B3, we may assume that B = B(H) where (H, ξ) is the
independent product of the spaces (Hj , ξj) := (Bj ∨ A) ⊗E A for j = 1, 2, 3. But by the
previous lemma,

(H, ξ) ∼= ((Hj , ξj)C(H2, ξ2))C(H3, ξ3).

This implies that B1 and B2 are independent and B1 ∨ B2 and B3 are indpendent.
The argument for (2) =⇒ (1) is similar. By applying Lemma 4.2.7 twice, we see that

(2) uniquely determines the expectations of elements of B1 ∨ B2 ∨ B3 given E|Bj . Thus, we
can assume that B1, . . . , B3 are represented on the product space ((Hj , ξj)C(H2, ξ2))C(H3, ξ3),
which is isomorphic to #3

j=1(Hj , ξj).

4.6 Independent Random Variables and Convolution of Laws

Next, we define what it means for random variables to be independent. In the following, for a
self-adjoint X in B ⊇ A, it will be convenient to denote by A〈X〉 the subalgebra of B generated
by A and X. This object is strictly speaking not the same thing as the formal polynomial
algebra A〈X〉, but this abuse of notation is already entrenched in algebra. We also denote by
A〈X〉0 the polynomials with no constant term, that is,

A〈X〉0 = Span{a0Xa1 . . . Xak : aj ∈ X , k ≥ 1}.

Definition 4.6.1. Self-adjoint random variables X1, . . . , XN in (B, E) are said to be freely
independent if the algebra A〈X1〉, . . . , A〈XN 〉 are freely independent. Random variables X1,
. . . , XN are said to be Boolean / monotone / anti-monotone independent if the algebrasA〈X1〉0,
. . . , A〈Xn〉0 are Boolean / monotone / anti-monotone independent.

Lemma 4.6.2. Given A-valued laws µ1, . . . , µN , there exists an A-valued probability space
(B, E) with self-adjoint elements X1, . . . , XN which are free / Boolean / monotone / anti-
monotone independent.
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Proof. By Theorem 1.6.5, the law µj is realized by the random variable Xj acting on the
Hilbert bimodule Hj = A〈Xj〉 ⊗µj A with the expectation given by the vector ξj = 1 ⊗ 1 in
Hj . Let (H, ξ) be the independent product of the spaces (H1, ξ1), . . . , (HN , ξN ). Let B be the
C∗-algebra generated by A and the variables X1, . . . , XN acting on H and define E[b] = 〈ξ, bξ〉.
Then X1, . . . , XN are independent with laws µ1, . . . , µN .

Definition 4.6.3 (Convolution). Let µ and ν be laws, and let X and Y be free / Boolean /
monotone / anti-monotone independent random variables with laws µ and ν respectively. We
define the free / Boolean / monotone / anti-monotone convolution of µ and ν to be the law of
X + Y . This is well-defined by Lemma 4.2.7. We denote this law by

µ� ν (free case)

µ ] ν (Boolean case)

µ� ν (monotone case)

µ� ν (anti-monotone case).

Lemma 4.6.4.

1. The operations �, ], �, and � are associative.

2. The operations � and ] are commutative.

3. We have µ� ν = ν � µ.

Proof. These follow from the corresponding properties of independence.

4.7 Analytic Transforms

Our next task to develop analytic tools for computing the independent convolution of two
laws. In the classical case, this role is played by characteristic function (Fourier transform)
of a law given by Fµ(ξ) =

∫
eixξ dµ(x), since addition of independent random variables or

classical convolution of laws corresponds to multiplication of the Fourier transforms. In the
non-commutative setting, this role is played by various fully matricial functions related to the
Cauchy-Stieltjes transform.

The Free Case

The following analytic transforms were defined by Voiculescu [Voi86]. In the operator-valued
case, the definition was developed by Dykema [Dyk07, §6].

Definition 4.7.1. For an A-valued law µ, we define Fµ(z) = Gµ(z)−1 and

Φµ(z) := F−1
µ (z)− z,

where F−1
µ (z) is the functional inverse and z is in the image of Fµ. We define the R-transform

Rµ(z) = Φ̃µ(z) = Φµ(z−1).

We caution that some authors have slightly different conventions for the definition of R-
transform. We will show that Φµ and Rµ are additive under free convolution, but first we must
say on what domain Φµ and Rµ are defined.
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Theorem 4.7.2. The function Φµ is a well-defined fully matricial function⋃
δ>‖Varµ(1)‖1/2

H2δ,+(A)→ H−(A).

Moreover, Rµ(z) = Φ̃µ(z) has a fully matricial extension to B(0, (3− 2
√

2)/ rad(µ)) satisfying

Rµ(0) = µ(X), Rµ(z∗) = Rµ(z)∗

and

‖Rµ(z)− µ(X)(n)‖ ≤ 2‖Varµ(1)‖ rad(µ)√
2− 1

.

Proof. By Theorem 3.5.3, there exists a self-adjoint a0 and a generalized law σ with rad(σ) ≤
2 rad(µ) such that

Fµ(z) = z − a0 −Gσ(z).

Let δ > ‖σ(1)‖1/2 = ‖Varµ(1)‖1/2. Then we claim that Fµ has an inverse function Ψ :
H+,2δ(A) → H+,δ(A). We will construct Ψ by a contraction mapping principle just as in
the inverse function theorem. We want to solve the equation

w = Ψ(w)− a0 −Gσ(Ψ(w)),

so that Ψ(w) satisfies the fixed point equation

Ψ(n)(w) = w + a
(n)
0 +G(n)

σ (Ψ(w)).

Let Hw(z) = w + a0 +Gσ(z). Note that by Lemma 3.3.1, if z, z′ ∈ H(n)
δ,+(A), then

‖Hw(z)−Hw(z′)‖ = ‖Gσ(z)−Gσ(z′)‖ ≤ ‖σ(1)‖
δ2

‖z − z′‖.

Therefore, Hw is a contraction provided that δ > ‖σ(1)‖1/2. Moreover, if Imw ≥ 2δ, then Hw

maps Hδ,+(A) into itself because

ImHw(z) = Imw + ImGσ(z) ≥ 2δ − ‖σ(1)‖
δ

≥ δ.

Therefore, by the Banach fixed point theorem, Hw has a unique fixed point Ψ(w) in H+,δ(A).
We also have

‖Ψ(w)− w‖ = ‖a(n)
0 +Gσ(Ψ(w))‖ ≤ ‖a0‖+

‖σ(1)‖
δ

≤ ‖a0‖+ δ.

Therefore, if we define

Ψ0(w) = w, Ψk+1(w) = Hw(Ψk(w)),

then for Imw ≥ 2δ,

‖Ψk(w)−Ψ(w)‖ ≤
(

1− ‖σ(1)‖
δ2

)k
(‖a0‖+ δ).

In particular, Ψk converges uniformly locally to Ψ on
⋃
δ>‖σ(1)‖1/2 H+,2δ(A). It follows that

Ψ(w) is fully matricial.
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By definition,
Φµ(z) = Ψ(z)− z = a0 +Gσ(Ψ(z)).

Therefore, Φµ is a fully matricial function
⋃
δ>‖σ(1)‖1/2 H+,2δ(A)→ H−(A). Now consider the

behavior of Φ̃µ = Rµ near zero. We have

Rµ(z) = a
(n)
0 +Gσ(Ψ(z−1))

= a
(n)
0 +Gσ(F−1

µ (z−1))

= a
(n)
0 + G̃σ(G̃−1

µ (z)).

By the inverse function theorem, since DG̃µ(0) = id, we know that G̃µ has a inverse function in
a neighborhood of zero, and hence Rµ is defined in a neighborhood of 0 and Rµ(0) = a0 = µ(X).

To get a more precise estimate on the size of the neighborhood, observe that for R =
1/ rad(µ), we have

‖∆kG̃µ(0, . . . , 0)‖# ≤
1

Rk−1
,

and therefore, we are in the setting of the inverse function theorem with M = R and K = 1.
Thus, by Theorem 2.8.1, G̃−1

µ maps B(0, R(3− 2
√

2))→ B(0, R(1− 1/
√

2)). But note that(
1− 1√

2

)
R <

1

2
R =

1

2 rad(µ)
≤ 1

rad(σ)
,

and hence B(0, R(1−1/
√

2)) is within the ball where G̃σ is defined, so that Rµ = G̃σ ◦G̃µ+a
(n)
0

is defined on B(0, R(3− 2
√

2)). Futhermore, G̃σ is bounded by

‖σ(1)‖
(1/2)R− (1− 1/

√
2)R

=
‖σ(1)‖ rad(µ)

1/2 + 1/
√

2− 1
=

2‖Varµ(1)‖ rad(µ)√
2− 1

.

The following result on the additivity of the R-transform was discovered in the scalar-valued
case by Voiculescu [Voi86]. The original proof by Voiculescu used canonical realizations of a
law µ by (non-self-adjoint) random variables on a Fock space, and this was adapted to the
operator-valued setting by Dykema [Dyk07, §6]. This theorem can also be proved through the
combinatorial apparatus of free cumulants due to Speicher [Spe94] [Spe98], which we describe
in the next chapter. The analytic proof presented here is due (in the scalar-valued setting) to
Lehner [Leh01, Theorem 3.1] and can also be found in [Tao, §4].

Theorem 4.7.3. For Im z ≥ 2δ > 2‖Varµ(1) + Varν(1)‖1/2, we have

Φµ�ν(z) = Φµ(z) + Φν(z).

Also, for z in a fully matricial neighborhood of 0, we have

Rµ�ν(z) = Rµ(z) +Rν(z)

Proof. Let X and Y be freely independent random variables in (B, E) which realize the laws µ
and ν.

We begin by analyzing Rµ(z) in a neighborhood of the origin. Now z−1 + Rµ(z) is the
functional inverse of Gµ(z) in a neighborhood of 0 which means that

E[(z−1 +Rµ(z)−X)−1] = z.
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Multiplying by z−1 on the right, we can write rewrite this as

E[(1 + zRµ(z)− zX)−1] = 1,

or in other words, the B-valued fully matricial function

UX(z) = (1 + zRµ(z)− zX)−1 − 1

has expectation zero (where in the definition of U
(n)
X (z), X denotes X(n)). The same holds

for the analogously-defined function UY (z). We want to show that z−1 −Rµ(z)−Rν(z) is the
functional inverse of Gµ�ν , which means that

Gµ�ν(z−1 +Rµ(z) +Rν(z)) = z,

which after multiplying by z−1 on the right is equivalent to

E[(1 + zRµ(z) + zRν(z)− zX − zY )−1] = 1.

We will rewrite the left hand side in terms of UX(z) and UY (z) so that we can apply freeness
together with the fact that UX(z) and UY (z) have expectation zero. Note that

(1 + zRµ(z) + zRν(z)− zX − zY )−1

= [(1 + UX(z))−1 + (1 + UY (z))−1 − 1]−1

= (1 + UX(z))[(1 + UY (z)) + (1 + UX(z))− (1 + UY (z))(1 + UX(z))]−1(1 + UY (z))

= (1 + UX(z))[1− UY (z)UX(z)]−1(1 + UY (z)).

Now because UX(0) = 0 = UY (0), we know that for sufficiently small z, we can expand
[1− UY (z)UX(z)]−1 as a geometric series, and thus for small z,

(1− zRµ(z)− zRν(z)− zX − zY )−1 = (1 + UX(z))

( ∞∑
k=0

(UY (z)UX(z))k

)
(1 + UY (z)).

Next, we take the expectation. Because UX(z) and UY (z) have expectation zero and because
X and Y are free, all the terms on the right hand side have zero expectation except the term 1
which comes from multiplying together the 1 from 1 + UX(z), the 1 from the geometric series,
and the 1 from 1 + UY (z). Therefore, as desired,

E[(1− zRµ(z)− zRν(z)− zX − zY )−1] = 1.

This shows that

Rµ�ν(z) = Rµ(z) +Rν(z)

holds in a neighborhood of zero.

This implies that Φµ�ν = Φµ + Φν if Im z is sufficiently large, and hence by Corollary
2.9.7, we have Φµ�ν = Φµ + Φν on H+,2δ(A), provided that this lies inside the common
domain of Φµ�ν , Φµ, and Φν . Since Varµ�ν(1) = Varµ(1) + Varν(1) and all these elements
are positive, we have ‖Varµ�ν(1)‖ ≥ max(‖Varµ(1)‖, ‖Varν(1)‖), and hence it is sufficient that

δ > ‖Varµ�ν(1)‖1/2.
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The Boolean Case

The results of this section can be found in [SW97] [Ber06, Theorem 2.2] for the scalar case and
[PV13, §2 and §5.3] in the operator-valued case.

Definition 4.7.4. For an A-valued law µ, we define the B-transform as

Bµ(z) := z − Fµ(z).

We caution that some authors use this notation for B̃µ(z) = Bµ(z−1) instead.

Remark 4.7.5. We showed in Theorem 3.5.3 that Bµ(z) = µ(X)(n) +Gσ(z) for some generalized
law σ.

Theorem 4.7.6. Bµ]ν(z) = Bµ(z) +Bν(z) as fully matricial functions.

Proof. Let X and Y be freely independent random variables in (B, E) which realize the laws µ
and ν. For small z, define

UX(z) = (1− zX)−1 − 1 =

∞∑
k=1

(zX)k,

and note that
1 + E[UX(z)] = E[(1− zX)−1] = G̃µ(z)z−1

or in other words
(1 + E[UX(z)])−1 = zF̃µ(z)

Note that UX(z) is in the closed span of A〈X〉0. Define UY (z) analogously. Then

1− zX − zY = (1 + UX(z))−1 + (1 + UY (z))−1 − 1

Therefore,

(1− zX − zY )−1 = [(1 + UX(z))−1 + (1 + UY (z))−1 − 1]−1

= (1 + UX(z))[1− UY (z)UX(z)]−1(1 + UY (z))

= (1 + UX(z))

( ∞∑
k=0

(UY (z)UX(z))k

)
(1 + UY (z)).

Next, we take the expectation. Because UX(z) and UY (z) are in the closures of Mn(A〈X〉0)
and Mn(A〈Y 〉0) respectively and because X and Y are Boolean independent, we have

E[(1− zX − zY )−1] = (1 + E[UX(z)])

( ∞∑
k=0

(E[UY (z)]E[UX(z)])k

)
(1 + E[UY (z)])

= [(1 + E[UX(z)])−1 + (1 + E[UY (z)])−1 − 1]−1

Therefore,
G̃µ]ν(z)z−1 = [(1 + E[UX(z)])−1 + (1 + E[UY (z)])−1 − 1]−1

By taking reciprocals,

zF̃µ]ν(z) = (1 + E[UX(z)])−1 + (1 + E[UY (z)])−1 − 1

= zF̃µ(z) + zF̃ν(z)− 1,
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Because zF̃µ(z)− 1 = zB̃µ(z) and the same holds for Y and X + Y , this means precisely that

zB̃µ]ν(z) = zB̃µ(z) + zB̃ν(z)

for z in a neighborhood of 0. By Corollary 2.9.7, we have Bµ]ν = Bµ + Bν on the upper half
plane.

The (Anti-)Monotone Case

The following result is due to [Mur00, Theorem 3.1] in the scalar-valued case and [Pop08a,
Theorems 3.2 and 3.7] in the operator-valued case, whose proof we follow here. Another proof
in the scalar case is in [Ber05].

Theorem 4.7.7. We have Fµ�ν(z) = Fµ(Fν(z)) and Fµ�ν(z) = Fν(Fµ(z)) as fully matricial
functions.

Proof. Let inv denote the fully matricial function z 7→ z−1 where defined. Since Fµ = inv ◦G̃µ ◦
inv and inv is an involution, it suffices to show that G̃µ�ν = G̃µ ◦ G̃ν .

Let X and Y be monotone independent random variables in (B, E) realizing the laws µ and
ν. We know that

E[f0(Y )g1(X)f1(Y ) . . . gn(X)fn(Y )] = E[E[f0(Y )]g1(X)E[f1(Y )] . . . gn(X)E[fn(Y )]]

whenever f(Y ) ∈ A〈Y 〉0 and f(X) ∈ A〈X〉0. However, this also holds trivially if fj(Y ) ∈ A,
and thus by linearity it holds when fj(Y ) ∈ A〈Y 〉.

Now for small z we have

G̃µ�ν(z) = E[(1− zX − zY )−1z]

= E[(1− (1− zY )−1zX)−1(1− zY )−1z] = E

[ ∞∑
k=1

[(1− zY )−1zX]k(1− zY )−1z

]
.

Note that (1 − zY )−1 is in the closure of Mn(A〈Y 〉) and zX ∈ Mn(A〈X〉0) and hence by
monotone independence

G̃µ�ν(z) = E

[ ∞∑
k=1

[E[(1− zY )−1z]X]kE[(1− zY )−1z]

]

= E

[ ∞∑
k=1

[G̃ν(z)X]kG̃ν(z)

]
= G̃µ ◦ G̃ν(z).

This equality extends to all z by Corollary 2.9.7. The anti-monotone case follows from the
monotone case since µ� ν = ν � µ.

4.8 Problems and Further Reading

Problem 4.1. Complete the details of the proof of Lemma 4.5.2 in all four cases.

Problem 4.2. Let (B, E) be an A-valued probability space. Let B1, . . . , Bn be A-subalgebras
of B. Show that for each type of independence, the following are equivalent:
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1. B1, . . . , Bn are independent.

2. For each j, the algebras B1 ∨ · · · ∨ Bj−1 and Bj ∨ · · · ∨ Bn are independent.

Problem 4.3. For each type of independence, show the following: Let (B, E) be an A-valued
probability space and let B1, . . . , Bn be A-subalgebras (unital in the free case). Then B1, . . . ,
Bn are independent over A if and only if Mn(B1), . . . , Mn(Bn) are independent over Mn(A) in
the probability space (Mn(B), E(n)).



Chapter 5

Combinatorial Theory of Independence

5.1 Introduction

While analytic transforms allow us to compute the convolution of two laws, one would like
more generally to compute arbitrary mixed moments of independent random variables X1,
. . . , XN . The theory of cumulants provides a combinatorial tool to do this. The formula for
converting between moments and cumulants is phrased in terms of non-crossing partitions of
the set [n] = {1, . . . , n}. This makes the computations easy to visualize even if they are not
numerically tractable in high degree.

Cumulants also provide a way to characterize independence in the free and Boolean cases,
and the power series coefficients of the analytic transforms in the last chapter are given by
cumulants. Although free cumulants were defined by Voiculescu [Voi86], the combinatorial
approach is due to Speicher [Spe94], [Spe98], and the adaptation to other types of operator-
valued independence is due to various authors, whom we will cite individually below. We begin
with basic definitions concerning non-crossing partitions.

5.2 Non-crossing Partitions

Definition 5.2.1. A partition of [n] is collection of nonempty subsets V1, . . . , Vk such that

[n] =
⊔k
j=1 Vj . We call the subsets Vj blocks. We denote by |π| the number of blocks. We

denote the collection of partitions by P(n).

Definition 5.2.2. Let π be a partition of [n]. A crossing is a set of indices i1 < j1 < i2 < j2
such that i1 and i2 are in the same block V and j1 and j2 are in the same block W 6= V . A
partition is said to be non-crossing if it has no crossings. We denote the set of non-crossing
partitions by NC(n).

A partition is non-crossing if and only if it can be drawn in the plane without crossings.
See Figures 5.2 and Figure 5.2.

Definition 5.2.3. A partition π ∈ P(n) is an interval partition if every block V has the form
{j, j + 1, . . . , k} for some j ≤ k. We denote the set of interval partitions by I(n).

Note that every interval partition is non-crossing.

79



80 CHAPTER 5. COMBINATORIAL THEORY OF INDEPENDENCE

1 2 3 4 5 6 7

Figure 51: The partition {{1, 7}, {2, 4}, {3, 5, 6}} has a crossing 2 < 3 < 4 < 5.

1 2 3 4 5 6 7

Figure 52: A non-crossing partition with blocks V1 = {1, 5, 7}, V2 = {2, 4}, V3 = {3} and
V4 = {6}.

Lattice Properties

Definition 5.2.4. We say that a partition π refines a partition σ, or π ≤ σ, if every block of
π is contained in some block of σ.

Definition 5.2.5. Given a partitions π1, . . . , πm of [n], we define their common refinement

m∧
k=1

πk = π1 ∧ · · · ∧ πm = {V = V1 ∩ · · · ∩ Vm : Vk a block of πk and V 6= ∅}.

The notation here makes sense because ∧ is commutative and associative.

Lemma 5.2.6. If π1, . . . , πm are non-crossing partitions of [n], then π1 ∧ · · · ∧ πm is non-
crossing. If π1, . . . , πm are interval partitions, then π1 ∧ · · · ∧ πm is an interval partition.

Proof. First, consider the non-crossing case. Suppose for contradiction that π = π1 ∧ · · · ∧ πm
has a crossing i1 < j1 < i2 < j2, where i1, i2 ∈ V and j1, j2 ∈W for two distinct blocks V and
W of π. By definition of ∧, for each partition πk, the indices i1 and i2 must be in the same
block Vk, and the indices j1 and j2 must be in the same block Wk. Since πk is non-crossing,
Vk must equal Wk, so that i1, i2, j1, and j2 are all in the same block of πk. But since this
holds for every k, the four indices must have been in the same block of π, which contradicts
our assumption that i1 < j1 < i2 < j2 is a crossing.

The interval case is immediate because the intersection of intervals is an interval.

The common refinement π1 ∧ · · · ∧ πm can be thought of as the minimum or greatest lower
bound of π1, . . . , πm with respect to the refinement partial order ≤. Indeed, we have π1 ∧ · · · ∧
πm ≤ πk for each k; on the other hand, if π ≤ πk for each k, then π ≤ π1 ∧ · · · ∧ πm.
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1 2 3 4 5

1 2 3

Figure 53: The partition π = {{1, 5}, {2, 3}, {4}} and π \ {2, 3}.

Moreover, each collection P(n), NC(n), and I(n) has a maximum operation given by

π1 ∨P · · · ∨P πm :=
∧

π∈P(n)
π≥πk∀k

π

π1 ∨NC · · · ∨NC πm :=
∧

π∈NC(n)
π≥πk∀k

π

π1 ∨I · · · ∨I πm :=
∧

π∈I(n)
π≥πk∀k

π.

In each case, the maximum is the smallest partition that is ≥ each of the πk’s. This shows that
each of the partially ordered sets P(n), NC(n), and I(n) is a lattice, that is, a partially ordered
set with greatest lower bounds and least upper bounds.

Further Terminology

Definition 5.2.7. Let V and W be blocks in a non-crossing partition π. We say that V �W
if there exist j, k ∈W with V ⊆ {j + 1, . . . , k − 1}. In terms of the picture, this means that V
is inside of W . Note that ≺ is a strict partial order on the blocks of π.

Example. In the partition in Figure 5.2, we have V3 � V2 � V1 and V4 � V1, but V4 is
incomparable with V2 and V3.

Definition 5.2.8. Let π ∈ NC(n) and let V be a block of π. Then we denote by π \ V the
partition of [n− |V |] given by deleting V from π and reindexing the terms [n] \V in order. For
example, see Figure 5.2.

5.3 Partitions as Composition Diagrams

A non-crossing partition can be interpreted as a diagram for composition of certain multilinear
forms.

Definition 5.3.1. Let B and C be A-A-bimodules. A multlinear form Λ : Bk → C will be
called an A-quasi-multlinear if we have

Λ[ab1, b2, . . . , bk] = aΛ[b1, . . . , bk]

Λ[b1, . . . , bk−1, bka] = Λ[b1, . . . , bk−1, bk]a

Λ[b1, . . . , bja, bj+1, . . . , bk] = Λ[b1, . . . , bj , abj+1, . . . , bk].
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1 2 3 4 5 6 7 8 9 10

Figure 54: For the partition π = {{1, 7, 9}, {2, 3}, {4, 6}, {5}, {8}, {10}}, we have
Λπ[b1, . . . , b10] = Λ3[b1,Λ2[b2, b3]Λ2[b4,Λ1[b5]b6]b7,Λ1[b8]b9]Λ1[b10].

We remark that

• Λ is A-quasi-multilinear if and only if it induces an A-A-bimodule map

B ⊗A · · · ⊗A B → C,

where ⊗A denotes the algebraic tensor product over A of a right A-module with a left
A-module.

• If V and W are vector spaces and Λ : Vk → W is a multilinear form, then the matrix
ampflication Λ(n,...,n) : Mn(V) is Mn(C)-quasi-multilinear.

• If (B, E) is an A-valued probability space, then Λ[b1, . . . , bk] = E[b1 . . . bk] is A-quasi-
multilinear.

Definition 5.3.2. Let B be an A-algebra. Let Λn : Bn → A be a sequence of A-quasi-
multilinear forms. For π ∈ NC(n), we define Λπ be the following recursive relation. If V =
{j + 1, . . . , k} is a block of π with k < n, then

Λπ[b1, . . . , bn] = Λπ\V [b1, . . . , bj ,Λk−j [bj+1, . . . , bk]bk+1, . . . , bn].

and if k = n, we have

Λπ[b1, . . . , bn] = Λπ\V [b1, . . . , bj ]Λn−j [bj+1, . . . , bn]

For example, see Figure 5.3.

To show that this is well-defined, first note that every partition must have some interval block
because a maximal block with respect to ≺ must be an interval. Moreover, by the associativity
properties of composition and the fact that Λn is A-quasi-multilinear, the resulting multilinear
form Λπ is independent of the sequence of recursive steps taken to evaluate it. Moreover, it is
straighforward to check that Λπ is A-quasi-multilinear.

Remark 5.3.3. The A-quasi-multilinear forms Λπ respect disjoint unions of partitions in the
following sense. Suppose that π = π1 t π2 where π1 is a non-crossing partition of {1, . . . , k}
and π2 is a non-crossing partition of {k + 1, . . . , n}. Then

Kπ[b1, . . . , bn] = Kπ1 [b1, . . . , bk]Kπ2 [bk+1, . . . , bn].

Now given a sequence of A-quasi-multilinear forms Λn and coefficients απ ∈ C for each
non-crossing partition π, we can define a new sequence of A-quasi-multilinear forms Γn by

Γn =
∑

π∈NC(n)

απΛπ. (5.3.1)
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In the moment-cumulant formulas to come, we will take Γn[b1, . . . , bn] = E[b1 . . . bn] and the
coefficients απ will depend on the type of independence. In order to determine the cumulants
from the moments E[b1 . . . bn], we will need to apply Möbius inversion to the formula (5.3.1).

Lemma 5.3.4. Let B be an A-A-module. Let Γn : Bn → A be a A-quasi-multilinear form. For
each non-crossing partition π, let απ ∈ C, and assume that απ 6= 0 when π consists of a single
block. Then there exist unique A-quasi-multilinear forms Λn : Bn → A such that (5.3.1) holds.

Proof. By separating out the partition {[n]} with only one block on the right hand side of
(5.3.1), we arrive at the formula

Γn =
1

α{[n]}

Λn −
∑

π∈NC(n)
|π|>1

cπΓπ

 .

Here Γπ can be computed from {Γk : k < n}, and thus we can solve for Γn inductively. One
checks inductively that Γn is A-quasi-multilinear.

5.4 Cumulants and Independence

The Free Case

The free cumulants were defined by Voiculescu in [Voi85], [Voi86]. Speicher defined joint cu-
mulants and discovered the relationship with non-crossing partitions [Spe94]. He also defined
the operator-valued free cumulants in [Spe98]. We follow essentially the arguments of [Spe98,
§3] which can also be found in [AGZ09, §5.3.2] in the scalar-valued case.

Definition 5.4.1. Let (B, E) be an A-valued probability space. The free cumulants are the
A-quasi-multilinear forms Kn : Bn → A given by

E[b1 . . . bn] =
∑

π∈NC(n)

Kπ[b1, . . . , bn]. (5.4.1)

This is well-defined by Lemma 5.3.4.

The next result show that free independence is characterized by vanishing of mixed cumu-
lants.

Theorem 5.4.2. Let B1, . . . , BN be unital A-subalgebras of the A-valued probability space
(B, E) and let Kn be the nth free cumulant function for B. The following are equivalent:

1. B1,. . . , BN are freely independent.

2. If b1, . . . , bn ∈ B with bj ∈ Bij and not all the ij’s are the same, then Kn[b1, . . . , bn] = 0.

Proof of (2) =⇒ (1). First, suppose that (2) holds. To demonstrate free independence, sup-
pose that b1, . . . , bn ∈ B with bj ∈ Bij , ij 6= ij+1, and E[bj ] = 0. We have

E[b1 . . . bn] =
∑

π∈NC(n)

Kπ[b1, . . . , bn].

Each partition π must have a maximal block with respect to ≺ which must be an interval block
I = {j+1, . . . , k}. If k > j+1, then I contains elements from more than one Bi since ij 6= ij+1.
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Hence, Kk−j [bj+1, . . . , bk] = 0 by condition (2). On the other hand, if k = j + 1, then I is a
singleton and K1[bj+1] = E[bj+1] = 0. Therefore, all the terms in the sum vanish, and hence
B1, . . . , BN are freely independent.

For the other direction, we use the following lemma which describes how to evaluate the
cumulants of products.

Lemma 5.4.3. Let m1, . . . , mn ≥ 1, and let Mk =
∑k
j=1mj. Let w : [Mn] → [n] be the

function that maps {Mj−1 + 1, . . . ,Mj} onto j. For π ∈ NC(n), let w∗π = {w−1(V ) : V ∈ π}.
Let τ ∈ NC(Mn) be the partition with blocks {Mj−1 + 1, . . . ,Mj}. Let ∨ denote the maximum
operation ∨NC. Then for π ∈ NC(n), we have

Kπ[(b1 . . . bM1
), (bM1+1 . . . bM2

), . . . , (bMn−1+1 . . . bMn
)] =

∑
σ∈NC(Mn)
σ∨τ=w∗π

Kσ[b1, . . . , bMn
]. (5.4.2)

Proof.
Step 1: Given N ≥ 1, we will show that if the claim holds for the partitions {[n]} for n ≤ N ,

then it holds for every partition π with blocks of size ≤ N . We proceed by induction on |π|. If
|π| = 1, then π = {[n]}, so there is nothing to prove. Otherwise, there exists an interval block
V = {j+ 1, . . . , k} of π. By the inductive hypothesis, the claim holds for the partition {[k− j]}
and it holds for π \ V . Therefore, using the recursive definition of the cumulants and splitting
up all the partitions named into subpartitions of w−1(V ) and [Mn] \ w−1(V ), we have

Kπ[(b1 . . . bM1
), (bM1+1 . . . bM2

), . . . , (bMn−1+1 . . . bMn
)]

=
∑

σ1∈NC(Mn−(Mk−Mj))

σ1∨(τ\w−1(V ))=w∗π\w−1(V )

∑
σ2∈NC(Mk−Mj)
σ2∨τ |V =[Mk−Mj ]

Kφ(σ1,σ2)[b1, . . . , bMn
],

where φ(σ1, σ2) is the partition of [Mn] given by

φ(σ1, σ2)|w−1(V ) = σ2 φ(σ1, σ2)|[Mn]\w−1(V ) = σ1.

Since w−1(V ) is an interval, it is clear that φ(σ1, σ2) is non-crossing. Also, the two conditions
σ1 ∨ (τ \ w−1(V )) = w∗π \ w−1(V ) and σ2 ∨ τ |V = [Mk −Mj ] are equivalent to

φ(σ1, σ2) ∨ τ = w∗π.

Moreover, every partition σ with σ ∨ τ = w∗π must restrict to subpartitions of w−1(V ) and
its complement since it is σ ≤ w∗π. Thus, σ can be expressed as φ(σ1, σ2) where σ1 and σ2.
Therefore, the claim holds for the partition π.

Step 2: It remains to show that the claim holds for the partitions {[n]}, which we will
prove by induction on n. The base case n = 1 follows immediately from the moment cumulant
formula because in this case τ = {[M1]}. For the inductive step, choose n > 1 and note that

E[b1 . . . bMn ] =
∑

σ∈NC([Mn])

Kσ[b1, . . . , bMn ]

=
∑

π∈NC(n)

∑
σ∈NC(Mn)
σ∨τ=w∗π

Kσ[b1, . . . , bMn ].
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On the other hand,

E[(b1 . . . bM1
)(bM1+1 . . . bM2

) . . . (bMn−1+1 . . . bMn
)]

=
∑

π∈NC(n)

Kπ[(b1 . . . bM1
), (bM1+1 . . . bM2

), . . . , (bMn−1+1 . . . bMn
)].

For every partition π other than {[n]}, we know that (5.4.2) holds by the inductive hypothesis
and Step 1. But summing up the left hand side and the right hand side of (5.4.2) over all
π ∈ NC(n) yields E[b1 . . . bMn

]. Thus, the terms for the partition {[n]} must also be equal, so
that (5.4.2) holds for {[n]} also.

Lemma 5.4.4. Let (B, E) be an A-valued probability space. If n ≥ 1, a ∈ A and b1, . . . ,
bn ∈ B, then

Kn+1[b1, . . . , bj , a, bj+1, . . . , bn] = 0.

Proof. We proceed by induction on n, but we include the argument for base case n = 1 in the
induction proof. Consider the case where j < n. Then we may apply the product formula
to evaluate Kn(b1, . . . , bj , abj+1, . . . bn). In this case, π = {[n]}, w∗π = {[n + 1]} and τ is the
partition where every block is a singleton except {j + 1, j + 2}. Other than {[n + 1]}, every
partition σ with σ ∨ τ = w∗π must have two blocks V1 3 j + 1 and V2 3 j + 2. If |V1| > 1,
then Kπ is evaluated by applying K|V1| to the indices in V1, which include the index j + 1 of
the term a, and by induction hypothesis, this evaluates to zero. The only remaining partition
is when |V1| = 1 which means that V1 = j + 1. Thus,

Kn(b1, . . . , bj , abj+1, . . . bn) = Kn+1[b1, . . . , bj , a, bj+1, . . . , bn]+Kn[b1, . . . , bj ,K1[a]bj+1, . . . , bn].

Since K1(a) = a, the second term on the right is equal to the left hand side, so that the Kn+1

term vanishes. In the case j = n, we apply the same reasoning to Kn(b1, . . . , bn−1, bna).

Proof of Theorem 5.4.2 (1) =⇒ (2).
Step 1: First, we show that given b1, . . . , bn with n ≥ 2, bj ∈ Bij and ij 6= ij+1, we have

Kn(b1, . . . , bn) = 0. We proceed by induction on n, the base case being included in the same
proof as the induction step. In light of Lemma 5.4.4 and multilinearity, the value of Kn is
unchanged if we replace bj by bj − E[bj ], so we may assume without loss of generality that
E[bj ] = 0. Then it follows from free independence that

0 = E[b1 . . . bn] =
∑

π∈NC(n)

Kπ[b1, . . . , bn].

Now if π ∈ NC(n) has a singleton block {j}, then the term Kπ[b1, . . . , bn] vanishes because
K1[bj ] = E[bj ] = 0. If π has no singleton blocks and π is not the partition {[n]}, then π
must have some interval block V = {j + 1, . . . , k} with 1 < k − j < n. By the induction
hypothesis, Kk−j [bj+1, . . . , bk] = 0 and therefore Kπ[b1, . . . , bn] = 0. The only remaining term
is Kn[b1, . . . , bn] and since the terms add up to zero, this last term must be zero as well.

Step 2: Now we prove the general case of (2), again by induction. Let n ≥ 2, and suppose
b1, . . . , bn with bj ∈ Bij and not all the ij ’s equal. If ij 6= ij+1 for each j, we are done by Step
1. So suppose that ij = ij+1 for some j. Applying the product formula, we have

Kn−1[b1, . . . , bj−1, bjbj+1, bj+2, . . . , bn] =
∑

σ∈NC(n+1)
σ∨τ={[n]}

Kπ[b1, . . . , bn],
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where τ is the partition in which every block is a singleton except {j, j+ 1}. The left hand side
vanishes by induction hypothesis. On the right hand side, every partition other than {[n]} has
two blocks V1 3 j and V2 3 j + 1. Because not all the ij ’s are equal, either V1 or V2 contains
indices j with more than one value of ij . Thus, Kπ[b1, . . . , bn] vanishes by induction hypothesis.
So all the terms vanish other than Kn[b1, . . . , bn], hence Kn[b1, . . . , bn] = 0 also.

Theorem 5.4.2 has as a corollary the following rule for evaluating joint moments of freely
independent random variables.

Lemma 5.4.5. Let B1, . . . , BN be freely independent subalgebras of (B, E) and let Kn be
the nth free cumulant. Let b1, . . . , bn ∈ B with bj ∈ Bij . Let σ be the partition with blocks
Vi = {j : bj ∈ Bi}. Then

E[b1 . . . bn] =
∑

π∈NC(n)
π≤σ

Kπ[b1, . . . , bn],

where the right hand side is expressed purely in terms of the free cumulants for the Bi’s.

Proof. We express E[b1, . . . , bn] as the sum over all partitions π ∈ NC(n). Then by Lemma
5.4.2, we Kπ[b1, . . . , bn] = 0 unless each block of π only contains bj ’s from the same algebra Bi.
But this is equivalent to π ≤ σ.

Lemma 5.4.6. Let (B0, E0) be an A-valued probability space. Let (B, E) be the free product of
N copies of (B0, E0) with inclusions ρj : B0 → B for j = 1, . . . , N . Then we have

Kn

 N∑
j=1

ρj(b1), . . . ,

N∑
j=1

ρj(bn)

 = NKn(b1, . . . , bn),

where the left hand side is the free cumulant of (B, E) and the right hand side is the free
cumulant of (B0, E0).

Proof. This follows by expanding the left hand side by multilinearity and then applying Theo-
rem 5.4.2. We also use the fact that since E0 = E ◦ ρj , we also have Kn[ρj(b1), . . . , ρj(bn)] =
Kn[b1, . . . , bn].

Remark 5.4.7. Another consequence is that to check free independence of algebras B1, . . . ,
BN , it suffices to check the mixed cumulants vanish for a generating set of each algebra. More
explicitly, suppose that Bi is contained in the closed A-algebra generated by an A-A-bimodule
Si ⊆ B with Si = S∗i . Suppose also that Kn[s1, . . . , sn] = 0 whenever sj ∈ Sij and not all the
ij ’s are equal. Then for every string s1, . . . , sn with sj ∈ Sij , we have by the same argument
as Lemma 5.4.5 that

E[s1 . . . sn] =
∑
π≤σ

Kπ[s1, . . . , sn],

where σ is the partition with blocks Vi = {j : ij = i}. This agrees with the expectation of
the same string in the free product of the algebras A〈Sj〉 generated by Sj . Moreover, the span
of such strings is dense in the A-algebra generated by S1, . . . , SN . Therefore, the algebras
generated by S1, . . . , SN have the same expectation as if they were freely independent, which
means that they are freely independent.
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The Boolean Case

The Boolean cumulants were developed by [SW97] in the scalar case and [Pop09] in the operator-
valued case; see also [PV13, §2].

Definition 5.4.8. A partition π of [n] is called an interval partition if every block is an interval
{j + 1, . . . , k}. We denote the set of interval partitions by I(n) ⊆ NC(n).

Definition 5.4.9. Let (B, E) be an A-valued probability space. The Boolean cumulants are
the A-quasi-multilinear forms Kn : Bn → A given by

E[b1 . . . bn] =
∑

π∈I(n)

Kπ[b1, . . . , bn]. (5.4.3)

This is well-defined by Lemma 5.3.4 using απ = 1π∈I(n) for π ∈ NC(n).

Theorem 5.4.10. Let B1, . . . , BN be non-unital A-subalgebras of the A-valued probability
space (B, E), and let Kn be the nth Boolean cumulant of B. The following are equivalent:

1. B1,. . . , BN are freely independent.

2. If b1, . . . , bn ∈ B with bj ∈ Bij and not all the ij’s are the same, then Kn[b1, . . . , bn] = 0.

Proof of (2) =⇒ (1). First, suppose that (2) holds. To demonstrate Boolean independence,
suppose that b1, . . . , bn ∈ B with bj ∈ Bij and ij 6= ij+1. Then we have

E[b1 . . . bn] =
∑

π∈I(n)

Kπ[b1, . . . , bn].

If π is an interval partition that has an interval I with |I| > 1, then I contains elements
from more than one algebra Bi and hence the cumulant corresponding to that block vanishes.
Therefore, the only partition that contributes to the sum is the partition of singletons, which
implies that

E[b1 . . . bn] = K1[b1] . . .K1[bn] = E[b1] . . . E[bn].

For the other direction, as in the free case, we use the following product formula for cu-
mulants. The proof is word-for-word the same as in the free case, except that non-crossing
partitions are replaced by interval partitions.

Lemma 5.4.11. Let m1, . . . , mn ≥ 1, and let Mk =
∑k
j=1mj. Let w : [Mn] → [n] be the

function that maps {Mj−1 + 1, . . . ,Mj} onto j. For π ∈ I(n), let w∗π = {w−1(V ) : V ∈ π}.
Let τ ∈ I(Mn) be the partition with blocks {Mj−1 + 1, . . . ,Mj}. Let ∨ denote the maximum
operation ∨I . Then for π ∈ I(n), we have

Kπ[(b1 . . . bM1), (bM1+1 . . . bM2), . . . , (bMn−1+1 . . . bMn)] =
∑

σ∈I(Mn)
σ∨τ=w∗π

Kσ[b1, . . . , bMn ]. (5.4.4)

Proof of Theorem 5.4.10 (1) =⇒ (2).
Step 1: First, we show that Kn[b1, . . . , bn] = 0 when n ≥ 2, bj ∈ Bij , and ij 6= ij+1. We

proceed by induction on n. By Boolean independence, we have

E[b1] . . . E[bn] = E[b1 . . . bn] =
∑

π∈I(n)

Kπ[b1, . . . , bn].
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Now if π is not equal to the singleton partition or the partition {[n]}, then π has some interval
block {j + 1, . . . , k} with k − j ≥ 2. By induction hypothesis Kk−j [bj+1, . . . , bk] = 0, so that
Kπ[b1, . . . , bn] = 0. The singleton partition yields the term K1[b1] . . .K1[bn] = E[b1] . . . E[bn]
which is equal to the right hand side. The only term which is unaccounted for is the term
Kn[b1, . . . , bn] on the right hand side, so this must equal zero.

Step 2: Now we prove the general case of (2) by induction on n. Let n ≥ 2 and let bj ∈ Bij
with not all the ij ’s equal. If ij 6= ij+1, we are done by Step 1. So assume that ij = ij+1. Let
τ be the partition of [n] with all singleton blocks except for {j, j + 1} and note that the only
two interval partitions σ with σ ∨ τ = {[n]} are {[n]} and {{1, . . . , j}, {j + 1, . . . , n}. So by the
product formula

Kn−1[b1, . . . , bj−1, bjbj+1, bj+2, . . . , bn] = Kn[b1, . . . , bn] +Kj [b1, . . . , bj ]Kn−j [bj+1, . . . , bn].

By induction hypothesis, the left hand side and the second term on the right hand side vanish,
and therefore, Kn[b1, . . . , bn] = 0.

Lemma 5.4.12. Let B1, . . . , BN be Boolean independent A-subalgebras of (B, E), and let Kn

be the nth Boolean cumulant. Let b1, . . . , bn ∈ B with bj ∈ Bij . Let σ be the partition with
blocks Vi = {j : bj ∈ Bi}. Then

E[b1 . . . bn] =
∑

π∈I(n)
π≤σ

Kπ[b1, . . . , bn],

where the right hand side is expressed purely in terms of the Boolean cumulants for the Bi’s.

Proof. We express E[b1, . . . , bn] as the sum over all partitions π ∈ NC(n). Then by Lemma
5.4.2, we Kπ[b1, . . . , bn] = 0 unless each block of π only contains bj ’s from the same algebra Bi.
But this is equivalent to π ≤ σ.

Lemma 5.4.13. Let (B0, E0) be an A-valued probability space. Let (B, E) be the Boolean
product of N copies of (B0, E0) with non-unital inclusions ρj : B0 → B for j = 1, . . . , N . Then
we have

Kn

 N∑
j=1

ρj(b1), . . . ,
N∑
j=1

ρj(bn)

 = NKn(b1, . . . , bn),

where the left hand side is the Boolean cumulant of (B, E) and the right hand side is the Boolean
cumulant of (B0, E0).

Proof. This follows by expanding the left hand side by multilinearity and then applying Theo-
rem 5.4.10. We also use the fact that since E0 = E ◦ ρj , we also have Kn[ρj(b1), . . . , ρj(bn)] =
Kn[b1, . . . , bn].

Remark 5.4.14. Similar to the free case, in order to check Boolean independence of algebras B1,
. . . , BN , it suffices to check the mixed cumulants vanish for a generating set of each algebra.
More explicitly, suppose that Bi is contained in the closed A-algebra generated by an A-A-
bimodule Si ⊆ B with Si = S∗i . Suppose also that Kn[s1, . . . , sn] = 0 whenever sj ∈ Sij and
not all the ij ’s are equal. Then B1, . . . , BN are freely independent.
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The Monotone Case

The monotone cumulants were developed in the scalar case by [HS11b] [HS11a] and in the
operator-valued case by [HS14].

Definition 5.4.15. Let π ∈ NC(n). Let Rπ be the product of copies of R indexed by the
blocks of the partition (or equivalently labelings of the blocks by real numbers). We say that
t ∈ Rπ is compatible with π or t |= π if we have V ≺W implies tV < tW for V,W ∈ π.

Definition 5.4.16. Let (B, E) be an A-valued probability space. The monotone cumulants
are the A-quasi-multilinear forms Kn : Bn → A given by

E[b1 . . . bn] =
∑

π∈NC(n)

γπKπ[b1, . . . , bn], (5.4.5)

where
γπ = |{t ∈ [0, 1]π : t |= π}|.

This is well-defined by Lemma 5.3.4 using απ = γπ.

In the monotone (and anti-monotone) cases, we cannot have an analogue of Theorems 5.4.2
and 5.4.10 because monotone independence is not invariant under reordering the algebras.
However, the analogues of Lemmas 5.4.5, 5.4.12 and Lemmas 5.4.6, 5.4.13 do hold.

Lemma 5.4.17. Let B1, . . . , BN be monotone independent subalgebras of (B, E) and let Kn

be the nth monotone cumulant. Let b1, . . . , bn ∈ B with bj ∈ Bij . Let σ be the partition with
blocks Vi = {j : bj ∈ Bi}. For each π ≤ σ, denote

π|Vi = {W ∈ π : W ⊆ Vi}.

Then we have

E[b1 . . . bn] =
∑

π∈NC(n)
π≤σ

∣∣{t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN : t |= π}
∣∣Kπ[b1, . . . , bn].

Proof. We define a new partition τ ≤ σ as follows. Let τj be the partition of Vj defined
by taking the common refinement of the partitions {Vj ∩ [1, k − 1], Vj ∩ [k + 1, n]} for each
k ∈

⋃
i<j Vi. Then let τ be the partition with blocks

⋃n
j=1 τj . In other words, τ is chosen to

be the maximal refinement of σ such that if two elements r and s are in the same block within
Vj , then there are no elements of Vi, i < j, between r and s.

For example, suppose that V1 = {1, 3, 8}, V2 = {2, 4, 6}, and V3 = {5, 7, 9}. Then V3 is
subdivided into blocks {5} and {7} and {9}, and V2 is subdivided into blocks {2} and {4, 6},
and V1 remains one block.

We can use monotone independence to evaluate E[b1 . . . bn] in terms of E|Bi in a way which
mimics the construction of τ . Indeed, if {j + 1, . . . , k} is a block of τN , that means that
bj+1, . . . , bk are in BN , while bj and bk+1 are not (when bj and bk+1 exist). Therefore, by
monotone independence,

E[b1 . . . bn] = E[b1 . . . bjE[bj+1 . . . bk]bk+1 . . . bn].

We can apply the same reasoning to each block of τN . Then we are left with a string of length
n− |VN | after we group each term E[bj+1 . . . bk] ∈ A for {j + 1, . . . , k} ∈ τN together with the
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following element bk+1. Next, by monotone independence, we may apply E to each block of
τN−1, and so forth.

Altogether, E[b1 . . . bn] is equivalent to the expression we get by applying the expectation
to each block of τj (together with the intervening terms in

⋃
i>j Vj). For example, in the case

where V1 = {1, 3, 8}, V2 = {2, 4, 6}, and V3 = {5, 7, 9}, we have

E[b1 . . . b9] = E[b1E[b2]b3E[b4E[b5]b6E[b7]]b8E[b9]].

Next, we apply the moment-cumulant formula (5.4.5) within each block of τj . We obtain∑
π≤τ

π|Wj∈NC(Wj)

γπ|W1
. . . γπ|Wm Kπ(b1, . . . , bn).

where W1, . . . , Wm are the blocks of τ and NC(Wj) is the set of non-crossing partitions of the
set Wj with the standard ordering of the elements.

We claim that for each term in the sum, π ∈ NC(n). Indeed, consider two blocks P and
Q of π. If P and Q are in the same block of τ , then they are not allowed to cross. If P and
Q are not in the same block of τ , but they are in the same Vj , then they also cannot cross
because the blocks of τj in Vj are intervals in Vj and hence do not cross. Finally, suppose that
P is within Vi and Q is within Vj with i < j. By construction of τ , the blocks of τj do not
cross Vi, and therefore a fortiori P and Q cannot cross. Therefore, we can replace the condition
“π ≤ τ ;π|Wj ∈ NC(Wj)” in the sum by “π ∈ NC(n);π ≤ τ .”

Next, we rewrite the term γπ|W1
. . . γπ|Wm . Suppose that Vj =

⋃
i∈Ij Wi. Then because the

Wi’s form an interval partition of Vj , the blocks in different Wj ’s are incomparable with respect

to �. Therefore, t ∈ [0, 1]π|Vj is compatible with π|Vj if and only if t|Wi
is compatible with

π|Wi
for each i ∈ Ij . This means that ∏

i∈Ij

γπ|Wi = γπ|Vj

and hence
γπ|W1

. . . γπ|Wm = γπ|V1 . . . γπ|VN .

We write this as

N∏
j=1

∣∣{t ∈ [0, 1]π|Vj : t |= π|Vj}
∣∣ =

N∏
j=1

∣∣{t ∈ [j − 1, j)π|Vj : t |= π|Vj}
∣∣,

where the equality follows from translation-invariance of Lebesgue measure. Now note that if
P ⊆ Vi and Q ⊆ Vj with i < j, then there cannot be any elements of P between any two

elements of Q and therefore P 6� Q. This implies that t ∈ [0, N)π satisfies t|Vj ∈ [j − 1, j)π|Vj

and t|Vj is compatible with π|Vj for each j, then t is compatible with π. Thus,

N∏
j=1

∣∣{t ∈ [j − 1, j)π|Vj : t |= π|Vj}
∣∣ =

∣∣{t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN : t |= π}
∣∣.

Therefore,

E[b1 . . . bn] =
∑

π∈NC(n)
π≤τ

∣∣{t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN : t |= π}
∣∣Kπ[b1, . . . , bn].
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It only remains to replace π ≤ τ by π ≤ σ in the index set for the sum by showing that the
terms for π 6≤ τ vanish. Suppose that π ≤ σ but π 6≤ τ . Then π must have some blocks P ⊆ Vj
and Q ⊆ Vi with i < j such that there exist r < k < s with r, s ∈ P and k ∈ Q. But then
Q � P . However, if

t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN ,

then tQ < tP and hence t cannot be compatible with π. This implies

{t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN : t |= π} = ∅,

so that π does not contribute to the sum.

Lemma 5.4.18. Let (B0, E0) be an A-valued probability space. Let (B, E) be the monotone
product of N copies of (B0, E0) with non-unital inclusions ρj : B0 → B for j = 1, . . . , N . Then
we have

Kn

 N∑
j=1

ρj(b1), . . . ,

N∑
j=1

ρj(bn)

 = NKn[b1, . . . , bn],

where the left hand side is the monotone cumulant of (B, E) and the right hand side is the
monotone cumulant of (B0, E0).

Proof. We can define two sequences of A-quasi-multilinear forms Bn → A by

Λn[b1, . . . , bn] = NKn[b1, . . . , bn]

and

Γn[b1, . . . , bn] = Kn

 N∑
j=1

ρj(b1), . . . ,

N∑
j=1

ρj(bn)

 .
(To show that Γn is A-quasi-multilinear, we use that fact that ρj is an A-A-bimodule map
even though ρj |A is not identity.) We want to prove that Γn = Λn and to do this, it suffices by
Lemma 5.3.4 to show that∑

π∈NC(n)

γπΓπ[b1, . . . , bn] =
∑

π∈NC(n)

γπΛπ[b1, . . . , bn].

Note that Λπ[b1, . . . , bn] = N |π|Kπ[b1, . . . , bn] by multilinearity of Kn. Meanwhile, on the right

side, we simply have a joint moment of the variables
∑N
j=1 ρj(bi) in (B, E). In other words, we

must show that

E

 N∑
j=1

ρj(b1), . . . ,

N∑
j=1

ρj(bn)

 =
∑

π∈NC(n)

N |π|γπKn(b1, . . . , bn).

Let ci =
∑N
j=1 ρj(bi). We will first evaluate E[c1 . . . cn] in terms of the joint cumulants of

the bj ’s. By multilinearity,

E[c1, . . . , cn] =
∑

j1,...,jn∈[N ]

E[ρj1(b1), . . . , ρjn(bn)].
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Given j1, . . . , jn, we define sets Vj(j1, . . . , jn) = {i : ji = j} and let σj1,...,jn be the correspond-
ing partition. Then we have by Lemma 5.4.17 that

E[c1, . . . , cn] =
∑

j1,...,jn∈[N ]

∑
π∈NC(n)
π≤σj1,...,jn

∣∣{t ∈ [0, 1)π|V1×· · ·×[N−1, N)π|VN : t |= π}
∣∣Kπ[ρj1(b1), . . . , ρjn(bn)].

In this sum, Kπ is computed completely from the joint cumulants Kn applied to tuples of
variables within the same algebra Bi. Therefore, the sum is equal to∑

j1,...,jn∈[N ]

∑
π∈NC(n)
π≤σj1,...,jn

∣∣{t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN : t |= π}
∣∣Kπ[b1, . . . , bn].

We can view this as a sum over pairs π and (V1, . . . , VN ) where π ≤ {V1, . . . , VN} because the
indices j1, . . . , jn are uniquely determined by the sets V1, . . . , VN , and we thus obtain∑

π∈NC(n)

∑
(V1,...,VN )
{V1,...,VN}≥π

∣∣{t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN : t |= π}
∣∣Kπ[b1, . . . , bn].

Next, note that

[0, N)π =
⊔

(jW )W∈π

∏
W∈π

[jW − 1, jW ) =
⊔

(V1,...,VN )
{V1,...,VN}≥π

[0, 1)π|V1 × · · · × [N − 1, N)π|VN ,

and therefore

{t ∈ [0, N)π : t |= π} =
⊔

(V1,...,VN )
{V1,...,VN}≥π

{t ∈ [0, 1)π|V1 × · · · × [N − 1, N)π|VN : t |= π}.

Therefore,

E[c1, . . . , cn] =
∑

π∈NC(n)

∣∣{t ∈ [0, N)π : t |= π}
∣∣Kπ[b1, . . . , bn]

=
∑

π∈NC(n)

N |π|γπKπ[b1, . . . , bn]

as desired.

5.5 Non-Commutative Generating Functions

In order to understand the relationship between cumulants and the analytic transforms dis-
cussed in the last chapter, we first establish some basic terminology for formal power series of
multilinear forms. For further background, see [Dyk07], [Pop08b].

Definition 5.5.1. A non-commutative generating function is a formal power series F (z) =∑∞
k=0 Λk[z, . . . , z] where Λk : Ak → A is a multilinear form. (Here a multilinear form A0 → A

is interpreted as a map C→ A or equivalently a constant in A.)
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Definition 5.5.2. If F =
∑
k Λk and G =

∑
k Γk, then we define the composition

F ◦G(z) =

∞∑
k=0

 ∑
m1...m`≥1

m1+···+m`=k

Λ`[Γm1
[z, . . . , z], . . .Γm` [z, . . . , z]]

 .

or more succinctly

F ◦G =

∞∑
k=0

∑
`≥1

∑
m1...m`≥1

m1+···+m`=k

Λ`[Γm1 , . . .Γm` ]

 .

Note that composition is associative.

Lemma 5.5.3. Let F =
∑∞
k=0 Λk with Λ0 = 0 and Λ1 invertible as a linear map. Then there

exists a non-commutative generating function G such that F ◦G(z) = z and G ◦ F (z) = z.

Proof. First, let us show the existence of a unique right inverse for F . If G =
∑
k≥1 Γk, then

G being a right inverse for F means that

∑
m1...m`≥1

m1+···+m`=k

Λ`[Γm1 , . . .Γm` ] =

{
id, k = 1

0, k > 1.

From the k = 1 case, we see that Γ1 = Λ−1
1 . For k > 1, can write

Λk[Γ1, . . . ,Γ1] = −
∑
`>1

∑
m1...m`≥1

m1+···+m`=k

Λ`[Γm1
, . . .Γm` ]

by separating out one term from the sum. Because Γ1 is invertible, this allows us to solve
for Λk inductively. This proves existence and uniqueness of a right inverse G. There is a
similar argument for the existence and uniqueness of a left inverse H. But then we have
G = (H ◦ F ) ◦G = H ◦ (F ◦G) = H, so the right and left inverse agree.

The following observations are elementary from the theory of fully matricial functions al-
ready developed. Every fully matricial function defined in a neighborhood of zero can be viewed
as a non-commutative generating function

∑∞
k=0 ∆kF (0, . . . , 0)[z, . . . , z]. The composition and

inverse function operations for fully matricial functions agree with the more general definitions
for generating functions.

Conversely, a non-commutative generating function defines a fully matricial function if the
power series converges in ‖·‖# on some ball B(0, R). However, in general, the multilinear forms
in a generating function need not be completely bounded, let alone have their sum converge
absolute in ‖·‖#.

However, we can view a non-commutative generating function as a literal function defined
on upper triangular nilpotent matrices. Let Nn(A) be the algebra of strictly upper trian-
gular (hence nilpotent) matrices over A. A non-commutative generating function F (z) =∑∞
k=0 Λk[z, . . . , z] defines a map F (n) : Nn(A) → Nn(A) (where we evaluate F (z) using Λ#

k )
which respects direct sums and intertwinings. Formally, we have Λk = ∆kF (0, . . . , 0). More-
over, the formal composition and inverse operations agree with the composition and inverse
operations for functions Nn(A)→ Nn(A).
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X X X X X Xz1 z2 z3 z4 z5

Figure 55: For π = {{1, 5, 6}, {2, 3}, {4}}, we have Cumπ(µ)[z1, . . . , z5] =
Cum3(µ)[z1 Cum2(µ)[z2]z3 Cum1(µ)z4, z5].

5.6 Cumulants of a Law and Analytic Transforms

Cumulants of a Law

Definition 5.6.1. Let µ be an A-valued law. We define the nth free / Boolean / monotone
cumulant of µ as the multilinear form An+1 → A given by

Cumn(µ)[z1, . . . , zn−1] = Kn[Xz1, Xz2, . . . , Xzn−1, X] = Kn[X, z1Z, . . . , zn−2X, zn−1X],

where X is a random variable in a probability space (B, E) which realizes the law µ, and Kn is
the nth free / Boolean / monotone cumulant for (B, E).

Definition 5.6.2. More generally, for π ∈ NC(n), we define the π cumulant of µ by

Cumπ(µ)[z1, . . . , zn−1] = Kπ[Xz1, Xz2, . . . , Xzn−1, X] = Kπ[X, z1Z, . . . , zn−2X, zn−1X].

These cumulants are equivalently given by the following recursive relations: First, if I = {j +
1, . . . , k} is a block of π, then

Cumπ(µ)[z1, . . . , zn−1] = Cumπ\I(µ)[z1, . . . , zj Cumk−j(µ)[zj+1, . . . , zk−1]zk, . . . , zn].

Remark 5.6.3. Diagrammatically, we can view the elements of {1, . . . , n} as copies of X, while
the zj ’s occupy the white space between the X’s. See Figure 5.6.

Definition 5.6.4. The moment generating function of a law µ is the non-commutative gener-
ating function

∞∑
k=0

Momk[z, . . . , z︸ ︷︷ ︸
k+1

].

Note that this is equal to G̃µ(z) as a generating function.

Definition 5.6.5. The free / Boolean / monotone cumulant generating function of µ is the
non-commutative generating function

∞∑
k=1

Cumk[z, . . . , z︸ ︷︷ ︸
k−1

].
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Free Cumulants and the R-transform

Theorem 5.6.6. For a non-commutative law µ, the free cumulant generating function is equal
to Rµ.

Proof. Recall that z−1 +Rµ(z) is the functional inverse of Gµ(z), which means that

(z−1 +Rµ(z))−1 =

∞∑
k=0

(−zRµ(z))kz

is the functional inverse of G̃µ(z).
Let Λπ = Cumπ(µ) and K(z) =

∑∞
k=1 Λk[z, . . . , z] be the cumulant generating function.

Note that

H(z) = (z−1 +K(z))−1 =

∞∑
k=0

(−zK(z))kz

makes sense as a generating function and that H(z) can be recovered from K(z) by

H(z) = (K(z)−1 − z)−1 =

∞∑
k=0

(K(z)z)kK(z).

Therefore, if we can show that H is the inverse generating function to G̃µ, then it will follow
that K(z) = Rµ(z) as desired.

We claim that G̃µ(H(z)) = z. Note that as a generating function, we have

G̃µ(z) = z +
∑
n≥1

∑
π∈NC(n)

zΛπ[z, . . . , z]z

as a consequence of the free moment-cumulant formula. In order to show that G̃µ(H(z)) = z,
it suffices to show that ∑

n≥1

∑
π∈NC(n)

H(z)Λπ[H(z), . . . ,H(z)]H(z) = 0.

Substituting H(z) =
∑∞
k=0(−zK(z))mz yields∑

n≥1

∑
π∈NC(n)

∑
m0,...,mn≥1

(−1)m1+···+mn(zK(z))m0zΛπ[(zK(z))m1z, . . . , (zK(z))mn−1z](zK(z))mnz.

Then we substitute K(z) =
∑
m≥1 Λm[z, . . . , z], so that

(zK(z))mjz =
∑

k1,...,kmj

zΛk1 [z, . . . , z]z . . .Λkmj [z, . . . , z]z.

Overall, we are summing over the following choices: We first choose a partition π in the sum.
Then we make a choice of m0, . . . , mn. Then for each j, we choose a list of mj terms from
K(z). The jth collection of mj terms is then inserted into the jth position of the partition π
(that is, in the white space between the indices j − 1 and j if 0 < j < n, in the white space
before 1 if j = 0, and in the white space after n if j = n).

Diagrammatically, we are taking the partition π and then creating a larger partition π̃ by
inserting mj chosen interval blocks between positions j−1 and j. For such a choice, we include



96 CHAPTER 5. COMBINATORIAL THEORY OF INDEPENDENCE

the term (−1)mΛπ[z, . . . , z] where m = m0 + · · · + mj is the total number of interval blocks
inserted. In other words, the expression we want to evaluate is∑

π

∑
ways of inserting
interval blocks

to obtain π̃

(−1)# of interval blocks insertedzΛπ̃[z, . . . , z]z

The sum makes sense as a generating function because there are only finitely many terms of a
given degree in z. Now we regroup the terms to sum over π̃ instead and obtain

∑
π̃

 ∑
ways of obtaining π̃

from some π

(−1)# of interval blocks inserted

 zΛπ̃[z, . . . , z]z.

Given π̃, what possibilities are there to obtain it from another partition π by adding interval
blocks? Letting S be the set of interval blocks of π, these possibilities can be enumerated by
choosing T ⊆ S and letting π = π̃ \ T . This means that the coefficient of zΛπ̃[z, . . . , z]z is∑

T⊆S

(−1)|T | = 0.

Therefore, G̃µ(H(z)) = z as desired.

Boolean Cumulants and the B-Transform

The following result is due to [SW97] in the scalar case and [Pop09, Remark 4.2] in the operator-
valued case.

Theorem 5.6.7. For a non-commutative law µ, the Boolean cumulant generating function is
equal to B̃µ.

Proof. Recall that Bµ(z) = z − Fµ(z) which means that G̃µ(z) = (z−1 − B̃µ(z))−1. Let
Λπ = Cumπ(µ) and let K(z) =

∑
k Λk[z, . . . , z] be the Boolean cumulant generating function.

To show that K(z) = B̃µ(z), it suffices to show that (z−1 − K(z))−1 = G̃µ(z), where we
interpret

(z−1 −K(z))−1 =

∞∑
m=0

(zK(z))mz

as generating functions. By expanding K(z) into the sum of cumulants, we obtain

∞∑
m=0

∑
k1,...,km≥1

zΛk1 [z, . . . , z]z . . .Λkm [z, . . . , z]z.

This is precisely ∑
interval partitions π

zΛπ[z, . . . , z]z

which is equal to G̃µ(z) by the Boolean moment-cumulant formula.
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π1 π2 π3

Figure 56: A partition with one outer block V and |V | = 4.

Monotone Cumulants and Composition Semigroups

The following result is due to Hasebe and Saigo [Has10b], [HS11b], [HS14].

Theorem 5.6.8. Let µ be an A-valued law and let K(z) be the monotone cumulant generating
function. For t ≥ 0, let Mt(z) be the generating function

Mt(z) = z +
∑
n≥1

∑
π∈NC(n)

γπt
|π|zCumπ(µ)[z, . . . , z]z.

Then Mt(z) is the unique generating function which (formally) solves the initial value problem

∂tMt(z) = Mt(z)K(Mt(z))Mt(z), M0(z) = z,

and M1(z) = G̃µ(z). Moreover, Mt forms a semigroup under composition.

Remark 5.6.9. The operation of monotone convolution (corresponding to composition of G̃
transforms) is not commutative and hence cannot be linearized like free or Boolean convolution.
However, when we restrict to the monotone convolution semigroup µn = µ�n generated by a
single law µ, convolution is commutative, and hence we may expect that it can be linearized.
The way to linearize it is to extend this semigroup formally to real values of t by setting
G̃µt = Mt (though µt is not necessarily a law). The function zK(z)z is the infinitesimal
generator of the composition semigroup Mt, and a straightforward rescaling argument shows
that αzK(z)z is the infinitesimal generator of the semigroup Mαt for α > 0. Hence, the map
µα 7→ αzK(z)z linearizes monotone convolution on {µα : α ≥ 0}.

Proof of Theorem 5.6.8. Note that ∂tMt(z) makes sense as a generating function since the term
for each degree of z is a polynomial in t, and we can compute the derivative term by term by
considering each partition π individually.

Let us call a block V of π outer if it does not lie inside any other block of π (that is, V is
minimal with respect to ≺). Consider first the case where π has only one outer block V and
suppose that |V | = m. Then we have

Cumπ[z, . . . , z] = Cumm[zCumπ1
[z, . . . , z]z, . . . , zCumπm−1

[z, . . . , z]],

where π1, . . . , πm−1 are the subpartitions of π that are between the elements of V (see Fig-
ure 5.6). The partition πj may be empty, in which we case we adopt the convention that
zCumπj [z, . . . , z]z = z. Observe that

γπt
|π| = |{s ∈ [1− t, 1]π : s |= π}|
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Such tuples s can be enumerated by choosing sV and then for each j, choosing sπj ∈ (1−sV , 1]πj

which is compatible with πj . Therefore, we have

γπt
|π| =

∫ 1

t

m−1∏
j=1

∣∣{sπj ∈ (1− sV , 1]πj : sπj |= πj}
∣∣ dsV .

Thus,

d

dt
[γπt

|π|] =

m−1∏
j=1

γπj t
|πj |.

So

d

dt

[
γπt
|π| Cumπ[z, . . . , z]

]
= Cumm[z γπ1t

|π1| Cumπ1 [z, . . . , z]z, . . . , z γπm−1t
|πm−1|[z, . . . , z]z].

Now consider the case of a general partition π. Let V1, . . . , Vk be the outer blocks of π from
left to right. Let τj be the subpartition of π which lies inside Vj (that is, τj = {W ∈ π : W � Vj}.
Then

zCumπ[z, . . . , z]z = zCumτ1 [z, . . . , z]zCumτ2 [z, . . . , z] . . . zCumτk [z, . . . , z]z

and

γπt
|π|zCumπ[z, . . . , z]z

= z
(
γτ1t

|τ1| Cumτ1 [z, . . . , z]
)
z
(
γτ2t

|τ2|Cumτ2 [z, . . . , z]
)
. . . z

(
γτkt

|τk| Cumτk [z, . . . , z]
)
z.

We differentiate this expression using the product rule, since each Cumτj term can be differenti-
ated using the preceding computation. We obtain a sum of terms indexed by τj or equivalently
indexed by the outer blocks of π, which can be written as

d

dt

[
γπt
|π|zCumπ[z, . . . , z]z

]
=

∑
outer blocks V

zCumπ0 [z, . . . , z]z

Cum|V |[zγπ1t
|π1| Cumπ1 [z, . . . , z]z, . . . , zCumπm−1 [z, . . . , z]z]zCumπm [z, . . . , z]z,

where π0, . . . , πm depend implicitly on V as follows; π0 is the subpartition of π to the left of
V , πm is the partition of π to the right of V , and π1, . . . , πm−1 are the subpartitions of π in
between the elements of V .

Now we sum this expression over all partitions π. It is convenient here to write NC =⋃∞
n=1NC(n) and NC0 = {∅} ∪ NC. Then

∑
π∈NC

d

dt

[
γπt
|π|zCumπ[z, . . . , z]z

]
=
∑
m≥1

∑
π0,...,πm∈NC0

zCumπ0 [z, . . . , z]z

Cumm[zγπ1
t|π1| Cumπ1

[z, . . . , z]z, . . . , zCumπm−1
[z, . . . , z]z]zCumπm [z, . . . , z]z.

This equation says precisely that

d

dt
[Mt(z)] = Mt(z)K(Mt(z))Mt(z).

Therefore, we have shown that Mt(z) solves the initial value problem. Moreover, the unique-
ness of a generating-function-valued solution to the equation is immediate because the derivative
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of the kth degree term of Mt(z) is a function of the lower degree terms, and hence all the terms
in the formal power series Mt(z) can be computed inductively.

To see that Mt(z) forms a composition semigroup, fix t0 and consider the two functions

Pt(z) = Mt+t0(z), Qt(z) = Mt(Mt0(z)).

Then we have P0(z) = Mt0(z) = Q0(z) and both these functions satisfy the equation

d

dt
Pt(z) = Pt(z)K(Pt(z))Pt(z).

Therefore, Pt(z) = Qt(z) for all t, so that Mt+t0(z) = Mt(Mt0(z)).

5.7 Problems and Further Reading

Problem 5.1. Let (B, E) be an A-valued probability space. Show that the free / Boolean /
monotone cumulants Kn for (Mm(B), E(m)) are the matrix amplifications of the cumulants for
(B, E).

Problem 5.2. Let X1, . . . , Xn be self-adjoint random variables in (B, E). Let X = X1 ⊕
· · ·⊕Xn and let RX be the Mn(A)-valued R-transform of X. Show that X1, . . . , Xn are freely
independent if and only if RX(z) is diagonal for sufficiently small z ∈ Mn(B). The analogous
result also holds for Boolean independence and B̃X .

Problem 5.3. For the free and Boolean cumulants, show that there are universal constants C
and M such that

‖Kn[b1, . . . , bn]‖ ≤ CMn‖b1‖ . . . ‖bn‖.

Problem 5.4. Let NCirr(n) be the set of non-crossing partitions with 1 and n in the same
block (called irreducible non-crossing partitions). Show that

Kbool
n =

∑
π∈NCirr(n)

Kfree
π .

and that
Kfree
n =

∑
π∈NCirr(n)

(−1)|π|−1Kbool
π .

Note: The second claim is harder to prove. These results were proved in [Leh02] [BN08].
Relations between all the different cumulants can be found in [Ari+15].

Further Reading

A unified approach to the theory of cumulants for the natural independences was given by
Hasebe and Saigo in [HS11a]. They characterized cumulants by the axioms of multilinearity,
polynomial dependence on moments which is universal for all probability spaces, and extensivity
(the property described in Lemmas 5.4.6, 5.4.13, 5.4.18).





Chapter 6

The Central Limit Theorem

6.1 Introduction

The central limit theorem of classical probability states that X1, . . . , XN are independent and
identically distributed with mean zero and variance 1, and if SN = (X1 + · · ·+XN )/

√
N , then

the law of SN approaches the standard normal distribution as N →∞.

There are analogous results for non-commutative independences. The limiting distributions
are as follows

free semicircle
1

2π

√
4− x2 1|x|<2 dx

Boolean Bernoulli
1

2
(δ−1 + δ1)

(anti-)monotone arcsine
1

π
√

2− x2
1|x|<

√
2 dx

For the free case, see [VDN92, §3.5]. For the Boolean case, see [SW97, Theorem 3.4]. For the
monotone case, see [Mur01].

In the operator-valued setting, the variance is not just a scalar, but rather a completely
positive map η : A → A given by

η[a] = µ[(X − µ(X))a(X − µ(X))].

Therefore, we will define A-valued semicircle, Bernoulli, and arcsine laws of variance η for each
completely positive η : A → A. Although there is no density in the operator-valued setting,
the combinatorial formulas for the moments of these laws adapt without difficulty.

We will then show that if X1, . . . , XN are A-valued independent and identically distributed
with mean zero and variance η, then the law of (X1 + · · ·+XN )/

√
N approaches the semicir-

cle/Bernoulli/arcsine law of variance η.

Because of the centrality of the central limit theorem, we will present three different ap-
proaches to the proof, first using analytic transforms, second using cumulants, and third using
Lindeberg exchange. We will also comment on the case of variables which are independent but
not identically distributed. The case of nonzero mean will be discussed in a later chapter.

The operator-valued central limit theorem can be found in the following references. For the
free case, see [Voi95, Theorem 8.4], [Spe98, §4.2]. For the Boolean case, see [BPV13, §2.1]. For
the monotone case, see [BPV13, §2.3], [HS14, Theorem 3.6].
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6.2 Operator-valued Semicircle, Bernoulli, and Arcsine Laws

Semicircle Law

The operator-valued semicircle law was defined in [Voi95], [Spe98, §4.2 - 4.3].
Let NC2(n) denote the set of non-crossing partitions on [n] where every block has exactly

two elements (which is empty if n is odd). Let η : A → A be completely positive. For
π ∈ NC2(n), denote by ηπ the multilinear form An−1 → A given recursively by the relation
that if {j, j + 1} ∈ π, then

ηπ[z1, . . . , zn−1] =


η[z1]z2ηπ\{1,2}[z3, . . . , zn−1], j = 1

ηπ\{1,2}[z1, . . . , zj−2, zj−1η[zj ]zj+1, zj+2, . . . , zn−1], 1 < j < n− 1

ηπ\{n−1,n}[z1, . . . , zn−3]zn−2η[zn−1], j = n− 1.

Then we define the A-valued semicircle law with mean zero and variance η as the map νη :
A〈X〉 → A given by

νη[z0Xz1 . . . Xzn] =
∑

π∈NC2(n)

z0ηπ[z1, . . . , zn−1]zn.

Equivalently, νη is given formally by the relation

Cumk(νη) =

{
η, k = 2

0, otherwise,

where Cumk is the kth free cumulant, or

Rνη = η.

We have not yet shown that νη is an A-valued law (completely positive and exponentially
bounded). To do this, we will construct a self-adjoint operator S on a Hilbert bimodule which
has the law νη. This is a special case of the construction in [Spe98, §4.7] and [PV13, Lemma
3.7].

Let N be the Hilbert A-A-bimodule A⊗η A. Then define

H = A⊕
⊕
n≥1

N ⊗A · · · ⊗A N︸ ︷︷ ︸
n

,

or more concisely

H =
⊕
n≥0

N⊗An,

where K⊗A0 = A. Let ξ be the vector 1 in the first direct summand A. Note that this is an
A-central unit vector. We call (H, ξ) the free Fock space generated by N .

For ζ ∈ N , we define the creation operator `(ζ) : N⊗An → N⊗An+1 by

`(ζ)[aξ] = ζa

`(ζ)[ζ1 ⊗ · · · ⊗ ζn] = ζ ⊗ ζ1 ⊗ · · · ⊗ ζn.

To show that this operator is bounded, observe that for h in the n-fold algebraic tensor product
of N over A, we have

〈`(ζ)h, `(ζ)h〉 = 〈h, 〈ζ, ζ〉h〉
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Thus, `(ζ) defines a bounded right A-linear operator `(ζ) : N⊗An → N⊗An+1 with ‖`(ζ)‖ ≤
‖ζ‖. Because H is the orthogonal direct sum of the tensor powers of N , we know `(ζ) defines
a bounded map H → H.

Moreover, we claim that `(ζ) has an adjoint given by the annihilation operator `(ζ)∗, where

`(ζ)∗[ξ] = 0

`(ζ)∗[ζ1 ⊗ · · · ⊗ ζk] = 〈ζ, ζ1〉ζ2 ⊗ · · · ⊗ ζk.

Indeed, a straightforward computation shows that 〈`(ζ)h, h′〉 = 〈h, `(ζ)∗h′〉 for h and h′ in the
algebraic direct sum of the algebraic tensor powers of N . It follows that ‖`(ζ)∗h‖ ≤ ‖ζ‖‖h‖ as
in Proposition 1.2.10 (4), and therefore, `(ζ)∗ defines a bounded operator H → H, and it is the
adjoint of `(ζ).

Proposition 6.2.1. Let η : A → A be completely positive, and let νη be the semicircular law
of mean zero and variance η. Let (H, ξ) be the free Fock space generated by N = A⊗η A.

1. The operator S = `(1⊗ 1) + `(1⊗ 1)∗ satisfies ‖S‖ ≤ 2‖η(1)‖1/2.

2. The law of S with respect to ξ is the operator-valued semicircle law νη.

3. In particular, νη is an A-valued law.

4. The law νη has mean zero and variance η, that is, νη(X) = 0 and Varνη (a) = νη(XaX) =
η(a).

Proof. (1) Letting ζ = 1⊗ 1 ∈ N , we have

`(ζ)∗`(ζ) = 〈ζ, ζ〉 = η(1)

and hence ‖`(ζ)‖ = ‖η(1)‖1/2 and ‖S‖ ≤ 2‖η(1)‖1/2.
(2) We want to compute the moment

〈ξ, a0Sa1 . . . Sanξ〉

for every a0, . . . , an ∈ A. We write S = `+ `∗ where ` = `(1⊗ 1), and then expand

a0(`+ `∗)a1 . . . (`+ `∗)an

by the distributive property into a sum of terms

a0b1a1 . . . bnan,

where bj ∈ {`, `∗}. Consider applying the operators an, bn, an−1, . . . to ξ in succession. Since
` maps N⊗Aj to N⊗Aj+1 and `∗ does the opposite, each vector ajbj . . . anbnanξ is in some
N⊗Aj . Applying ` increases the index by 1 and applying `∗ decreases it (and `∗(aξ) = 0 for
a ∈ A).

For each term in the sum, we define a sequence of ordered lists corresponding to the sub-
strings aj−1bj . . . anbnanξ as follows (by induction from n to 1). At time n, we have the empty
list. If bj = `, then we append j to the start of the list . If bj = `∗ and the list at time
j + 1 is not empty, then we remove the first element from the list. If bj = `∗ and the list at
time j + 1 is empty, then we terminate the process and do not define any more lists. In this
case, aj+1bj . . . an−1bnanξ is in Aξ and hence bjaj+1bj . . . an−1bnanξ = 0, so this term does not
contribute to the sum.
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a8 ∅
a7`a8 (8)

a6`a7`a8 (7, 8)
a5`a6`a7`a8 (6, 7, 8)

a4`
∗a5`a6`a7`a8 (7, 8)

a3`
∗a4`

∗a5`a6`a7`a8 (8)
a2`a3`

∗a4`
∗a5`a6`a7`a8 (2, 8)

a1`
∗a2`a3`

∗a4`
∗a5`a6`a7`a8 (8)

a0`a1`
∗a2`a3`

∗a4`
∗a5`a6`a7`a8 ∅

Figure 61: Construction of a sequence of ordered lists from a string of `’s and `∗’s.

a0 `∗ a1 `∗ a2 ` a3 `∗ a4 `∗ a5 ` a6 ` a7 ` a8

8 3 3 7 6 6 7 8

a0 η[ a1 η[ a2 ] a3 η[ a4 η[ a5 ] a6 ] a7 ] a8

Figure 62: Constructing a planar partition π from a sequence of `’s and `∗’s (top), and evalu-
ation of ηπ (bottom). This is the same sequence as in Figure 61.

Suppose that we never apply `∗ to a vector in Aξ and hence the lists are defined all the way
to time 1. At time 1, if the list is not empty, then a0b1a1 . . . bnan is not in Aξ and hence

〈ξ, a0b1a1 . . . bnanξ〉 = 0.

Therefore, the term a0b1a1 . . . bnan only contributes to the sum when the list at time 1 is empty.
An example of such a string and a sequence of lists is shown in Figure 61.

Consider such a term. Let us label each occurrence of ` as bj with its index j, and let us
label each occurrence of `∗ as bj with the list element which is removed from the list at time
j. This produces a pairing between the occurrences of ` and the occurrences of `∗ because
each list element was added to the list once and removed from the list once. See Figure 62 for
an example. This pairing of `’s and `∗’s represents a pair partition of [n]. This partition is
non-crossing; indeed, if s is added to the list and then r is added to the list before s is removed,
then r must be removed from the list before s.

Conversely, every planar partition of [n] produces a term a0b1a1 . . . bnan where for each
{j, k} ∈ π with j < k, we let bj = `∗ and bk = `. One can show by induction on the size of π
that the corresponding string yields

〈ξ, a0b1a1 . . . bnanξ〉 = a0ηπ[a1, . . . , an−1an.
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This follows from the identity `∗a` = η(a) for a ∈ A. Therefore,

〈ξ, a0Sa1 . . . Sanξ〉 =
∑

π∈NC2(n)

a0ηπ[a1, . . . , an−1]an,

so S has the law νη as desired.
(3). Because νη is given by the moments of S with respect to ξ, we know that νη is

completely positive and exponentially bounded. Also, νη is an A-A-bimodule map because ξ
is an A-central unit vector in H. So νη is a law.

(4). This follows from direct computation.

Lemma 6.2.2. Let νη be the semicircle law of variance η. Then νη � νη′ = νη+η′ .

Proof. This follows from the definition of νη in terms of cumulants and the additivity of the
R-transform under free convolution.

Bernoulli Law

We define the A-valued Bernoulli law with mean zero and variance η as the map νη : A〈X〉 → A
given by

νη[z0Xz1 . . . Xzn] =

{
z0η(z1)z2 . . . η(zn−1)zn, n is even

0, n is odd.

Equivalently, νη is given formally by the relation

Cumk(νη) =

{
η, k = 2

0, otherwise,

where Cumk is the kth Boolean cumulant, or

B̃νη = η.

Remark 6.2.3. The analogous definition to the free case would be take the sum of z0ηπ[z1, . . . , zn−1]zn
over all interval partitions into pairs. But there is only one such partition if n is even (namely
{{1, 2}, {3, 4}, . . . , {n− 1, n}) and there are no such partitions if n is odd.

We have not yet shown that νη is an A-valued law (completely positive and exponentially
bounded). To do this, we will construct a self-adjoint operator S on a Hilbert bimodule which
has the law νη. This is a special case of the construction in [PV13, Lemma 2.9].

Let N be the Hilbert A-A-bimodule A⊗η A. Let

H = A⊕N

Let ξ be the vector 1 in the first direct summand A. Note that this is an A-central unit vector.
We call (H, ξ) the Boolean Fock space generated by N .

For ζ ∈ N , we define the creation operator `(ζ) : H → H by

`(ζ)[aξ] = ζa

`(ζ)|N = 0.

The verification that `(ζ) is bounded is similar to the free case. Moreover, its adjoint is the
annihilation operator `(ζ)∗ which is given by

`(ζ)∗[ξa] = 0

`(ζ)∗[ζ ′] = 〈ζ, ζ ′〉ξ.



106 CHAPTER 6. THE CENTRAL LIMIT THEOREM

Proposition 6.2.4. Let η : A → A be completely positive, and let νη be the Bernoulli law of
mean zero and variance η. Let (H, ξ) be the Boolean Fock space generated by N = A⊗η A.

1. The operator S = `(1⊗ 1) + `(1⊗ 1)∗ satisfies ‖S‖ = ‖η(1)‖1/2.

2. The law of S with respect to ξ is the operator-valued Bernoulli law νη.

3. In particular, νη is an A-valued law.

4. The law νη has mean zero and variance η, that is, νη(X) = 0 and Varνη (a) = νη(XaX) =
η(a).

Proof. (1) Because `(1 ⊗ 1) maps Aξ to N and N to zero and `(1 ⊗ 1)∗ does the reverse, we
have

‖S‖ ≤ max(‖`(1⊗ 1)‖, ‖`(1⊗ 1)∗‖) = ‖`(1⊗ 1)∗`(1⊗ 1)‖1/2

= ‖PAξη(1)PAξ‖1/2

= ‖η(1)‖1/2.

(2) To compute the moment 〈ξ, a0Sa1 . . . Sanξ〉 for every a0, . . . , an ∈ A, we write S = `+`∗

where ` = `(1⊗ 1), and then expand

a0(`+ `∗)a1 . . . (`+ `∗)an

by the distributive property into a sum of terms

a0b1a1 . . . bnan,

where bj ∈ {`, `∗}. Consider applying the operators an, bn, an−1, . . . to ξ in succession. If
we apply `∗ to Aξ or ` to N , we get 0. Therefore, the only combination which could have a
nonzero contribution is the term

a0`
∗a1`a2 . . . `

∗an−1`an

when n is even. This yields the operator-valued Bernoulli law.
(3) and (4) are similar to the free case.

Lemma 6.2.5. Let νη be the Bernoulli law of mean zero and variance η. Then νη]νη′ = νη+η′ .

Proof. This follows from the definition of νη in terms of cumulants and the additivity of the
B-transform under Boolean convolution.

Arcsine Law

We define the A-valued arcsine law with mean zero and variance η as the map νη : A〈X〉 → A
given by

νη[z0Xz1 . . . Xzn] =
∑

π∈NC2(n)

γπz0ηπ[z1, . . . , zn−1]zn,

where

γπ = |{t ∈ [0, 1]π : t |= π}|.
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Equivalently, νη is given formally by the relation

Cumk(νη) =

{
η, k = 2

0, otherwise,

where Cumk is the kth monotone cumulant.
As in the free and Boolean cases, we will show that νη is a law by constructing a self-adjoint

operator on a Hilbert A-A-bimodule which has the law νη. As we saw in §5.6, the monotone
cumulants are naturally related to composition semigroups and differential equations. Thus, it
is natural to include the time parameter t in the construction of our Hilbert bimodule. The
following construction was done in the scalar case by [Lu97] and [Mur97].

We define C = C([0, 1],A). We define a completely positive map I : C → C by

I[f ](t) =

∫ 1

t

η[f(s)] ds

and a completely positive map I ′ = C → A by

I ′[f ] =

∫ 1

0

η[f(s)] ds.

Let N = C ⊗I C and N ′ = C ⊗I′ A. We claim that there is a well-defined embedding of N ′ into
N given by

f(t)⊗ a ∈ C ⊗I C 7→ f(t)⊗ a ∈ C ⊗I′ A.

To see this, observe that by complete positivity of η,〈∑
j

fj(t)⊗ aj ,
∑
j

fj(t)⊗ aj

〉
I

(t) =

∫ 1

t

∑
j,k

a∗jη[fj(s)
∗fk(s)]ak ds

≤
∫ 1

0

∑
j,k

a∗jη[fj(s)
∗fk(s)]ak ds

=

〈∑
j

fj(t)⊗ aj ,
∑
j

fj(t)⊗ aj

〉
I′

,

so that ∥∥∥∥∥∥
∑
j

fj(t)⊗ aj

∥∥∥∥∥∥
C⊗IC

=

∥∥∥∥∥∥
∑
j

fj(t)⊗ aj

∥∥∥∥∥∥
C⊗I′A

,

and hence N ′ embeds isometrically into N (even though the inner products take values in
different algebras), and it is clear that this embedding is right A-linear.

We define H as the Hilbert A-A-bimodule

H = A⊕
⊕
n≥1

N⊗C(n−1)N ′.

Note that H can be regarded as a C-A-bimodule where the left C action on A is given by

f · a = f(0)a.
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Let ξ be the vector 1 in the first direct summand A. We call (H, ξ) the monotone Fock space
generated by N ′.

For ζ ∈ N ′ ⊆ N , we define the creation operator `(ζ) by

`(ζ)[ξ] = ζ,

`(ζ)[ζ1 ⊗ · · · ⊗ ζn] = ζ ⊗ ζ1 ⊗ · · · ⊗ ζn.

Similar to the free case, one argues that this is well-defined and bounded with norm equal to
‖ζ‖I . Moreover, the adjoint is given by the operator

`(ζ)∗[ξ] = 0

`(ζ)∗[ζ ′] = 〈ζ, ζ ′〉I′
`(ζ)∗[ζ1 ⊗ · · · ⊗ ζn] = 〈ζ, ζ1〉Iζ2 ⊗ · · · ⊗ ζn, n ≥ 2.

Proposition 6.2.6. Let η : A → A be completely positive, and let νη be the arcsine law of
mean zero and variance η. Let C, I, and I ′ be as above. Let (H, ξ) be the monotone Fock space
generated by A⊗η A.

1. The operator S = `(1⊗ 1) + `(1⊗ 1)∗ satisfies ‖S‖ ≤ 2‖η(1)‖1/2.

2. The law of S with respect to ξ is the operator-valued arcsine law νη.

3. In particular, νη is an A-valued law.

4. The law νη has mean zero and variance η, that is, νη(X) = 0 and Varνη (a) = νη(XaX) =
η(a).

Proof. (1) We have ‖`(1⊗ 1)‖ = ‖1⊗ 1‖N ′ = ‖η(1)‖1/2.
(2) Let ` = `(1⊗ 1) and `∗ = `(1⊗ 1)∗. As in the free case, we expand

〈ξ, a0(`+ `∗)a1 . . . (`+ `∗)anξ〉

using the distributive property. After discarding some zero terms, this results in a sum of terms
indexed by NC2(n). For each partition, the first element of each block corresponds to a copy of
`∗ and the second element of each block corresponds to a copy of `. We also have the identity

`∗f` = I[f ]

where f and I[f ] ∈ C represent the left multiplication operators on H (which are multiplication
by f(0) and I[f ](0) on the direct summand A). This implies that

〈ξ, a0(`+ `∗)a1 . . . (`+ `∗)anξ〉 =
∑

π∈NC2(n)

a0Iπ[a1, . . . , an−1]an

∣∣∣∣
t=0

,

where Iπ : Cn−1 → C is defined recursively the same way as ηπ. More explicitly, Iπ is given by
the recursive relation that if {k, k + 1} is an block of π, then

Iπ[c1, . . . , cn−1] =


I[c1]c2Iπ\{1,2}[c3, . . . , cn−1], k = 1

Iπ\{k,k+1}[c1, . . . , ck−1I[ck]ck+1, . . . , cn−1], 1 < k < n− 1

Iπ\{n−1,n}[c1, . . . , cn−3]cn−2I[cn−1], k = n− 1.
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Now we claim that

Iπ[a1, . . . , an−1](t) = γπ(1− t)|π|ηπ[a1, . . . , an−1]

= |{s ∈ [t, 1]π : s |= π}| ηπ[a1, . . . , an−1],

which we prove by induction on |π|. The base case where π has only one block is immediate.
For inductive step, recall from the proof of Theorem 5.6.8 that a block of π is called outer if
it minimal with respect to ≺. First, suppose that π has exactly one outer block V . This block
must be V = {1, n}. So we see that

Iπ[a1, . . . , an−1] = I[a1Iπ\V [a2, . . . , an−2]an−1].

Applying the inductive hypothesis, we get

Iπ[a1, . . . , an−1](t) =

∫ 1

t

η[a1Iπ\V [a2, . . . , an−2]an−1] dsV

=

∫ 1

t

∣∣∣{s ∈ [sV , 1]π\V : s |= π \ V
}∣∣∣ dsV ηπ[a1, . . . , an−1]

= |{s ∈ [t, 1]π : s |= π}| ηπ[a1, . . . , an−1].

On the other hand, suppose that π has more than one outer block. Then we can write π = π1tπ2

where π1 and π2 are non-crossing partitions of {1, . . . , k} and {k+1, . . . , n} for some 1 < k < n.
We can then apply the inductive hypothesis to π1 and π2 to prove the claim for π.

Altogether, we have shown that

〈ξ, a0Sa1 . . . Sanξ〉 =
∑

π∈NC(n)

γπa0ηπ[a1, . . . , an−1]an.

and hence the law of S is νη, proving claim (2). Claims (3) and (4) are then immediate.

Example. As an example of the evaluation of Iπ in the preceding argument, consider the
partition {{1, 8}, {2, 3}, {4, 7}, {5, 6}} from Figure 62. In this case,

Iπ[a1, . . . , a7]|t=0 =

∫ 1

0

η

[
a1

∫ 1

s8

η[a2] ds3 a3

∫ 1

s8

η

[
a4

∫ 1

s7

η[a5] ds6 a6

]
ds7 a7

]
ds8

= |{(s3, s6, s7, s8) : s3 < s8, s6 < s7 < s8}| ηπ[a1, . . . , a7].

Lemma 6.2.7. Let νη be the arcsine law of variance η. Then ν�N
η = νNη.

Proof. This follows from the definition of νη in terms of cumulants together with Lemma
5.4.18.

6.3 Central Limit Theorem via Cumulants

The proof of the central limit theorem using cumulants is straightforward given the results of
the previous chapter. It also handles free, Boolean, and (anti-)monotone independence in one
argument.

Definition 6.3.1. For an A-valued law µ, we define the dilation dilt(µ) by

dilt(µ)[a0Xa1 . . . Xan] = tnµ[a0Xa1 . . . Xan].

In other words, if µ is the law of X, then dilt(µ) is the law of tX.
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Observation 6.3.2. If µ is an A-valued law, then Cumk(dilt(µ)) = tk Cumk(µ) for the free,
Boolean, and monotone cumulants.

Theorem 6.3.3. Let µ be an A-valued law with mean zero and variance η.

1. µ�N converges to the semicircle law of variance η as N →∞.

2. µ]N converges to the Bernoulli law of variance η as N →∞.

3. µ�N converges to the arcsine law of variance η as N →∞.

Proof. For each type of independence, let λN be the N−1/2 dilation of the N -fold convolution
of µ. Then

Cumk(λN ) = N1−k/2 Cumk(µ).

Therefore,

lim
N→∞

Cumk(λN ) =

{
η, k = 2

0, otherwise,

where the limit occurs in ‖·‖#. Now by the moment-cumulant relations, the moments of λN
also converge to the moments of µ in ‖·‖#.

6.4 Central Limit Theorem via Analytic Transforms

Next, we will give proofs of the central limit theorem using analytic transforms. We include
explicit estimates on the rate of convergence of the analytic transforms to those of the central
limit distribution.

The behavior of analytic transforms under dilation is as follows. The verification is a
straightforward computation, which we leave as an exercise.

Observation 6.4.1.

Gdilt(µ)(z) = t−1Gµ(t−1z)

Fdilt(µ)(z) = tFµ(t−1z)

Φdilt(µ)(z) = tΦµ(t−1z)

Rdilt(µ)(z) = tRµ(tz)

Bdilt(µ)(z) = tBµ(t−1z).

Theorem 6.4.2 (Analytic Free CLT). Let µ be an A-valued law with mean zero and variance
η. Then dil1/

√
N (µ�N ) converges in moments to the semicircle law of variance η. Moreover,

there are universal constants C and C ′ such that

‖z‖ ≤ CN1/2/ rad(µ) =⇒ ‖Rdil1/
√
N (µ�N )(z)− η(z)‖ ≤ C ′N−1/2‖η(1)‖ rad(µ).

Proof. Let λN = dil1/
√
N (µ�N ) and let νη be the semicircle law of variance η. By Theorem

4.3.1 (3),

rad(µ�N ) ≤ (2N1/2 + 1) rad(µ),

so that

rad(λN ) ≤ (2 +N−1/2) rad(µ).
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By the additivity and dilation properties of the R-transform,

RλN = N−1/2(NRµ)(N−1/2z) = N1/2Rµ(N−1/2z).

Now Rµ : B(0, C1/ rad(µ)) → B(0, C2‖η(1)‖ rad(µ)) for some universal constants C1 and C2,
and hence

‖Rµ(z)− η(z)‖ = ‖Rµ(z)−∆Rµ(0, 0)[z]‖ ≤ C2‖z‖2‖η(1)‖ rad(µ)

C1/ rad(µ)− ‖z‖
≤ C3‖z‖2‖η(1)‖ rad(µ)

when ‖z‖ ≤ C1/2 rad(µ). Hence,

‖N1/2Rµ(N−1/2z)− η(z)‖ ≤ C3N
−1/2‖η(1)‖ rad(µ)

for ‖z‖ ≤ C1N
1/2/2 rad(µ).

Recalling that G̃−1
µ (z) = z(1 +Rµ(z)z)−1, we see that for sufficiently large N , we have

sup
z∈B(0,C4/ rad(µ))

∥∥∥G̃−1
λN

(z)− G̃−1
νη (z)

∥∥∥ ≤ C5N
−1/2‖η(1)‖ rad(µ).

Now as in the proof of Theorem 4.7.2, we have G̃λN : B(0, C6/ rad(λN ))→ B(0, C7/ rad(λN ))
(and of course rad(λN ) ≤ 3 rad(µ)). So by continuous dependence of the inverse function
(Proposition 2.8.4, we have for sufficiently large N that

sup
z∈B(0,C8/ rad(µ))

∥∥∥G̃λN (z)− G̃νη (z)
∥∥∥ ≤ C9N

−1/2‖η(1)‖ rad(µ).

Therefore, by Proposition 3.6.6, we have λN → νη.

Theorem 6.4.3 (Analytic Boolean CLT). Let µ be an A-valued law with mean zero and vari-
ance η. Then dil1/

√
N (µ]N ) converges in moments to the Bernoulli law of variance η. Moreover,

there are universal constants C and C ′ such that

‖z‖ ≤ CN1/2/ rad(µ) =⇒ ‖B̃dil1/
√
N (µ]N )(z)− η(z)‖ ≤ C ′N−1/2‖η(1)‖ rad(µ).

Proof. The argument is similar to and easier than the free case. Letting λN = dil1/
√
N (µ]N )

and νη be the Bernoulli law of variance η, we again have rad(λN ) ≤ 3 rad(µ). Also, B̃λN (z) =

N1/2B̃µ(N−1/2z). From here one argues that B̃λN (z) → η(z) and G̃λN (z) → G̃νη (z) in a
neighborhood of zero, so that λN → νη in moments.

Theorem 6.4.4 (Analytic Monotone CLT). Let µ be an A-valued law with mean zero and
variance η. Then dil1/

√
N (µ�N ) converges in moments to the arcsine law of variance η. More-

over,

Im z ≥ ε =⇒
∥∥∥Gdil1/

√
N (µ�N )(z)−Gνη (z)

∥∥∥ ≤ 4‖η(1)‖ rad(µ)

ε4N1/2
.

Proof. Note that for a law µ of mean zero and variance η, we have

Fµ(z) = z −Gσ(z),

where σ is a generalized law with rad(σ) ≤ 2 rad(µ) and σ|A = η. So

Gσ(z)− η#(z−1) = σ[(z −X)−1 − z−1] = −σ[(z −X)−1Xz−1],
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so that

Im z ≥ ε =⇒ ‖Gσ(z)− η#(z−1)‖ ≤ ‖σ(1)‖ rad(σ)

ε2
≤ 2‖η(1)‖ rad(µ)

ε2
,

and hence

‖Fµ(z)− z + η(z−1)‖ ≤ 2‖η(1)‖ rad(µ)

ε2

The same holds with µ replaced by the arcsine law νη, so that

‖Fµ(z)− Fνη (z)‖ ≤ 2‖η(1)‖(rad(µ) + 2‖η(1)‖1/2)

ε2
≤ 4‖η(1)‖ rad(µ)

ε2
.

Because monotone convolution corresponds to composition of F -transforms, we have

Gµ�N −Gν�N
η

=

N∑
j=1

[
Gµ�(j−1) ◦ Fµ ◦ Fν�(N−j)

η
−Gµ�(j−1) ◦ Fνη ◦ Fν�(N−j)

η

]
.

Recall that every F transform maps H+,ε(A) into itself, and Gµ�(j−1) is 1/ε2 Lipschitz on H+,ε.
Therefore,

∥∥∥Gµ�N (z)−Gν�N
η

(z)
∥∥∥ ≤ N∑

j=1

1

ε2

∥∥∥(Fµ − Fνη ) ◦ F
ν

�(N−j)
η

(z)
∥∥∥

≤ 4N‖η(1)‖ rad(µ)

ε4
.

Letting λN = dilN−1/2(µ�N ) and applying rescaling, we have

Im z ≥ ε =⇒
∥∥GλN (z)−Gνη (z)

∥∥ ≤ 4‖η(1)‖ rad(µ)

ε4N1/2
.

6.5 Central Limit Theorem via Lindeberg Exchange

Finally, we will give a proof of the central limit theorem using an exchange technique which
Lindeberg invented for classical central limit theorem in 1922 [Lin22]. Considering a sum of
independent random variables X1 + · · ·+XN and a function f , we want to estimate

E[f((X1 + · · ·+XN )/
√
N)]− E[f(Y )]

where Y has the normal distribution. We estimate the difference by replacing the Xj ’s one at
a time by normal random variables Yj , so that

E[f(N−1/2(X1 + · · ·+XN ))]− E[f(N−1/2(Y1 + · · ·+ YN ))]

=

N∑
j=1

(
E[f(N−1/2(X1 + · · ·+Xj + Yj+1 + · · ·+ YN ))]− E[f(N−1/2(X1 + · · ·+Xj−1 + Yj + · · ·+ YN ))]

)
The individual error terms are then estimated using a Taylor expansion of f .
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Non-Commutative Function Spaces

To adapt this to the non-commutative setting, we will take f to be a non-commutative polyno-
mial in A〈X〉. To estimate error terms in the Taylor-Taylor expansion of f (Lemma 2.4.1) evalu-
ated on self-adjoint operators, we want an non-commutative analogue of supt∈[−R,R] |(d/dt)kf(t)|
for a function f on the real line. Of course, once we have such an analogue, we can take the com-
pletion with respect to this norm and view it as a non-commutative analogue of Ck([−R,R]).
Estimates for the rate of convergence in the central limit theorem will naturally extend to the
completion as well.

Definition 6.5.1. Let f ∈ A〈X〉. We define

‖f‖k,R = sup{‖E[∆kf(x0, . . . , xk)[z1, . . . , zk]]]‖ : xj , zk ∈ (B, E), xj = x∗j , ‖xj‖ ≤ R, ‖zj‖ ≤ 1},

where the supremum is taken over every tuple x0, . . . , xk of self-adjoints with ‖xj‖ ≤ R and
every tuple z1, . . . , zk with ‖zj‖ ≤ 1 in an A-valued probability space (B, E).

Remark 6.5.2. The collection of probability spaces is not a set. However, we can rephrase
the definition by taking the supremum over all possible joint laws of x0, . . . , xk and real and
imaginary parts of z1, . . . , zk. The space of joint laws is a set because it consists of functions
from a formal polynomial algebra into A.

Definition 6.5.3. We define Cknc(A, R) to the completion of A〈X〉 with respect to the norm

‖f‖Cknc(A,R) =

k∑
j=0

‖f‖k,R.

Note that ‖f‖k,R extends continuously to the completion.

Remark 6.5.4. Although ‖f‖k,R is difficult to compute, it is not hard to find upper bounds
for it when f has an explicit form (e.g. a monomial). Moreover, if φ ∈ C∞c (R), then φ(X) is
in Cknc(A, R) for every k and R since ‖f‖k,R can be estimated using results of Peller [Pel06].
However, we will leave such questions aside and return to the central limit theory.

Lindeberg-type Theorem

Theorem 6.5.5. For free, Boolean, and monotone independence, the following holds. Suppose
that X1, . . . , XN are independent self-adjoint variables in (B1, E) and Y1, . . . , YN are indepen-
dent self-adjoint variables in (B2, E). Suppose ‖Xj‖ ≤M , ‖Yj‖ ≤M and VarXj = ηj = VarYj
and E[Xj ] = 0 = E[Yj ]. Let f ∈ C3

nc(A, R). Then∥∥∥E[f(N−1/2(X1 + · · ·+XN ))]− E[f(N−1/2(Y1 + · · ·+ YN ))]
∥∥∥ ≤ 2N−1/2M3‖f‖3,(2+N−1/2)M .

Proof. Because C3
nc(A, R) is the completion of polynomials, it suffices to prove the theorem

when f ∈ A〈X〉. The expectations we want to compute depend only on the type of inde-
pendence and the laws of X1, . . . , XN and Y1, . . . , YN . Thus, we can change the underlying
probability space as long as these properties are preserved. Let (B, E) be the independent
product of A〈X1〉, A〈Y1〉, . . . , A〈XN 〉, A〈YN 〉. Let

Sj = N−1/2(X1 + · · ·+Xj + Yj+1 + · · ·+ YN )

Tj = N−1/2(X1 + · · ·+Xj−1 + Yj+1 + · · ·+ YN ).
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Then we want to estimate

‖E[f(SN )]− E[f(S0)]‖ ≤
N∑
j=1

‖E[f(Sj)]− E[f(Sj−1)]‖.

Now

f(Sj) = f(Tj +N−1/2Yj)

= f(Tj) +N−1/2∆F (Tj , Tj)[Yj ] +N−1∆2F (Tj , Tj , Tj)[Yj , Yj ] +N−3/2∆3f(Sj , Tj , Tj , Tj)[Yj , Yj , Yj ]

and similarly

f(Sj−1) = f(Tj +N−1/2Xj)

= f(Tj) +N−1/2∆F (Tj , Tj)[Xj ] +N−1∆2F (Tj , Tj , Tj)[Xj , Xj ] +N−3/2∆3f(Sj−1, Tj , Tj , Tj)[Xj , Xj , Xj ]

In the two Taylor expansions, the degree zero terms are equal.
We claim that the first degree terms have expectation zero, that is,

E[∆F (Tj , Tj)[Yj ]] = 0 = E[∆F (Tj , Tj)[Xj ]].

To see this, note that ∆F (Tj , Tj)[Yj ] is a sum of monomials in the Xi’s and Yi’s with only one
occurrence of Yj . Using the computation of joint moments for independent random variables
(Lemmas 5.4.5, 5.4.12, 5.4.17), we see that the expectation is zero and the same holds for
∆F (Tj , Tj)[Xj ].

We claim that the second degree terms in the Taylor expansion have the same expectation,
that is,

E[∆2F (Tj , Tj , Tj)[Yj , Yj ]] = E[∆2F (Tj , Tj , Tj)[Xj , Xj ].

We can write out ∆2F (Tj , Tj , Tj)[Yj , Yj ] as a sum of monomials which each have degree two in
Yj . Again invoking Lemmas 5.4.5, 5.4.12, 5.4.17, we see that a joint moment of X1, . . . , Xj−1,
Yj , . . . , Yj+1 with degree two in Yj only depends on the cumulants of X1, . . . , Xj−1, Yj+1, . . . ,
YN and the first and second cumulants of Yj (that is, the mean and variance of Yj). Moreover,
if we replace Yj with Xj , then the computation of moments is the same because X1, . . . , Xj ,
Yj+1, . . . , YN are also independent and because Xj has the same mean and variance as Yj .
This shows that the two quantities have the same expectation.

Next, we turn to the third degree terms in the Taylor expansion, which we treat as error
terms. By Theorem 4.3.1 (3), we obtain

‖Tj‖, ‖Sj‖ ≤ (2 +N−1/2)M.

and hence∥∥E[∆3f(Sj , Tj , Tj , Tj)[Yj , Yj , Yj ]]
∥∥ ≤ ‖∆3f‖∗(2+N−1/2)M‖Yj‖

3 ≤ ‖∆3f‖∗(2+N−1/2)MM
3.

The same holds for ∆3f(Sj−1, Tj , Tj , Tj)[Xj , Xj , Xj ].
Putting together all the terms from the Taylor expansion, we have

‖f(Sj)− f(Sj−1)‖ ≤ 2N−3/2‖∆3f‖∗(2+N−1/2)MM
3.

Then summing from j = 1 to N , we obtain

‖f(SN )− f(S0)‖ ≤ 2N−1/2‖∆3f‖∗(2+N−1/2)MM
3.
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Estimates on the Cauchy-Stieltjes Transform

As a consequence, we now derive estimates for the rate of convergence of the Cauchy-Stieltjes
transform, similar to the main theorem of [MS13].

Lemma 6.5.6. Let z ∈ H(1)
+ (A). Then f(z,X) = (z − X)−1, as a function of X, is in the

space Cknc(A, R) for every R and k. Moreover, if Im z ≥ ε, then

‖f(z, ·)‖k,R ≤
1

εk+1
.

Proof. Choose a space (B, E). Let us write f(z,X) = (z −X)−1 where defined for z ∈ A and
X ∈ B. Suppose that Im z ≥ ε and ‖Im(X)‖ ≤ ε/2. Observe that

(z −X)−1 = ((z − 3iR−X) + 3iR)−1 =

∞∑
k=0

[(z − 3iR−X)−12iR]k(z − 3iR−X)−1.

where the series converges uniformly for such values of z and X because

‖(z − 2iR−X)−1‖ ≤ 1

3R+ ε/2
.

On the other hand, if ‖X‖ ≤ 2R, then

(z − 3iR−X)−1 =

∞∑
m=0

[(z − 3iR)−1X]m(z − 3iR)−1,

where the series again converges uniformly. The upshot is that there exist polynomial functions
fn(z,X) such that

fn(z,X)→ (z −X)−1 uniformly when Im z ≥ ε, ‖X‖ ≤ R, ‖ImX‖ ≤ ε/2.

Because {X : ‖X‖ < R, ‖Im(X)‖ < ε/2} is a matricial domain, we can apply the Cauchy-type
estimates of Lemma 2.4.2 to conclude that

∆k
Xfn(z,X0, . . . , Xk)→ ∆k

Xf(z,X0, . . . , Xk)

uniformly for Im z ≥ ε, ‖Xj‖ ≤ R, ‖ImXj‖ ≤ ε/4. In particular, we have uniform convergence
on self-adjoint variables Xj with ‖Xj‖ ≤ R. This implies that {fn(z, ·)} is Cauchy in Cknc(A, R)
for every k and that

‖f(z, ·)‖k,R ≤ sup
(B,E)

sup
‖Xj‖≤R,
X∗j =Xj

‖∆k
Xf(z,X0, . . . , Xk)‖.

Now

∆k
Xf(z,X0, . . . , Xk)[Y1, . . . , Yk] = (z −X0)−1Y1(z −X1)−1 . . . Yk(z −Xk)−1,

and hence

‖f(z, ·)‖k,R ≤
1

εk+1
.
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Proposition 6.5.7. Let µ be an A-valued law with mean zero and variance η. Let λN be the
N−1/2 dilation of the N -fold convolution of µ for free, Boolean, or monotone independence.
Let νη be the semicircle / Bernoulli / arcsine law. Then

sup
Im z≥ε

∥∥GλN (z)−Gνη (z)
∥∥ ≤ 2 rad(µ)3

N1/2ε4

Proof. As in Theorem 6.5.5, we can construct a probability space (B, E) with independent
variables X1, . . . , XN with law ν and independent variables Y1, . . . , YN with law νη.

Fix z ∈ H(n)
+ (A). Note that X

(n)
1 , . . . , X

(n)
N are independent over Mn(A) and the same holds

for Y
(n)
1 , . . . , Y

(n)
N . Moreover, f(X) = (z − X)−1 is in C3

nc(Mn(A), R) with ‖f‖3,R ≤ 1/ε4.
Therefore, by Theorem 6.5.5,∥∥∥E(n)[(z −N−1/2(X

(n)
1 + · · ·+X

(n)
N ))−1 − E(n)[(z −N−1/2(Y

(n)
1 + · · ·+ Y

(n)
N ))−1

∥∥∥ ≤ 2 rad(µ)3

N1/2ε4
.

6.6 Generalizations

Independent but Not Identically Distributed Variables

Since Theorem 6.5.5 applies even when the random variables do not have the same law, it is
natural to generalize the central limit theorem as well. In the free case, the semicircle laws
satisfy νη � νη′ = νη+η′ . Thus, if µj has variance ηj , we can expect µ1 � · · · � µN to be well-
approximated by νη1+···+ηN after an appropriate rescaling. The analogous statement holds in
the Boolean case as well.

However, in the monotone case, we do not have νη�νη′ = νη+η′ in general or even νη�νη′ =
νη′ � νη. Nonetheless, µ1 � · · ·� µN is still well-approximated by νη1 � · · ·� νηN , where ηj is
the variance of µj . In light of this idea, we will call νη1 � · · · � νηN a generalized arcsine law,
and we shall have more to say about such laws in the next chapter.

Altogether, we have the following generalization of Proposition 6.5.7.

Proposition 6.6.1. For j = 1, . . . , N , let µj be an A-valued law with mean zero, variance ηj,
and rad(µj) ≤ M . Let λ be the N−1/2 dilation of the convolution of µ1, . . . , µN . Let ν be
the semicircle / Bernoulli law of variance N−1

∑
j ηj in the free / Boolean cases; and in the

monotone case, let ν be the generalized arcsine law dilN−1/2(νη1 � · · · � νηN ) where νηj is the
arcsine law of variance η. Then

sup
Im z≥ε

‖Gλ(z)−Gν(z)‖ ≤ 2 rad(µ)3

N1/2ε4

Mixing Types of Independence

The Lindeberg exchange approach actually works in far greater generality than we have pre-
sented it. As an example, suppose that X1, . . . , XN are freely independent, XN+1, . . . , X2N

are Boolean independent, and that A〈X1, . . . , XN 〉 and A〈X1, . . . , XN 〉 are monotone indepen-
dent. Suppose that Y1, . . . , Y2N have the same independence properties as the Xj ’s. Suppose
Xj and Yj have mean zero and the same variance, and ‖Xj‖, ‖Yj‖ ≤M .

Then we have∥∥∥E[f((2N)−1/2(X1 + · · ·+X2N ))]− E[f((2N)−1/2(Y1 + · · ·+ Y2N ))]
∥∥∥ ≤ 2(2N)−1/2M3‖f‖∗3,(2N)1/2M .
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The proof is exactly the same as for Theorem 6.5.5 with a few differences. First, we have
substituted the crude bound 2NM for the norm of a sum of random variables rather than the
more refined estimate (2

√
2N + 1)M which is available for 2N independent random variables

with the same type of independence.
Second, when we compute the moments in the Taylor expansion, we must use all three

Lemmas 5.4.5, 5.4.12, and 5.4.17 successively. But the end result is the same. The expectation
of a non-commutative monomial in X1, . . . , X2N which has degree nj in Xj only depends on
the first nj moments of Xj . in fact, this property is sufficient to make the Lindeberg exchange
method work, and hence we expect this method to generalize to other notions of independence.

6.7 Problems and Further Reading

Problem 6.1. Verify Observation 6.4.1 by computing the analytic transforms of dilt(µ).

Problem 6.2. Adapt the analytic proofs of the CLT for each type of independence to the case
where the variables are independent but not identically distributed.





Chapter 7

Convolution Semigroups

7.1 Introduction

In classical probability theory, one considers convolution semigroups of measures µt on R sat-
isfying µs ∗µt = µs+t. Such semigroups are classified by the L’evy-Hinčin formula, which says,
in the case of mean zero and finite moments, that the classical cumulants of µt are given by
t times the moments of another measure σ. The measures which are part of a convolution
semigroup are known as infinitely divisible.

Free, Boolean, and monotone analogues of the Lévy-Hinčin formula were considered by
various authors; see for the free case [Voi86, Theorem 4.3], [BV92], [Bia98], [Spe98, §4.5 -
4.7], [PV13, §3]; for the Boolean case [SW97, Theorem 3.6], [PV13, §2]; for the monotone case
[Has10a], [Has10b], [HS14], [AW16].

As a consequence, there are bijections in the scalar case between the infinitely divisible
laws for classical, free, Boolean, and monotone independence, which we will refer to collectively
as the Bercovici-Pata correspondence. The original paper of Bercovici and Pata studied the
classical, free, and Boolean cases bijection [BP99]. Later authors established bijections in the
monotone cases, then generalized the free-Boolean-monotone bijections to the multivariable
and operator-valued setting; see [BN08], [BPV12], [AW14], [AW16]. Let us now summarize the
main results that we will present in this chapter.

Definition 7.1.1. An A-valued free/Boolean/monotone convolution semigroup is family of
A-valued laws {µt}t∈[0,+∞) such that the mean µt(X) depends continuously on t and

µs � µt = µs+t (free case)

µs ] µt = µs+t (free case)

µs � µt = µs+t (monotone case)

Note that in the monotone case, we also have µs � µt = µs+t. Thus, an anti-monotone
convolution semigroup is equivalent to a monotone convolution semigroup. In this chapter,
we describe the analytic characterization of convolution semigroups in terms of their cumulant
generating functions, which act as a kind of infinitesimal generator for the semigroup.

Theorem 7.1.2.

1. If {µt} be a free/Boolean/monotone convolution semigroup, then there exists a generalized
law σ and a self-adjoint a ∈ A such that

Kµt(z
−1) = t(a+Gσ(z)), (7.1.1)

119
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where Kµt is the free/Boolean/monotone cumulant generating function.

2. Let us denote Gσ,a(z) = a + Gσ(z) and denote DFµt(z) = ∆Fµt(z, z). Then the F -
transforms of the semigroup µt satisfy the differential equation

∂tFµt(z) =


−DFµt(z)[Gσ,a(Fµt(z))], free case

−Gσ,a(z), Boolean case

−DFµt(z)[Gσ,a(z)], monotone case

−Gσ,a(Fµt(z)), monotone case,

(7.1.2)

where the differentiation occurs with respect to the operator norm on Mn(A) and the

equation holds for each z ∈ H(n)
+ (A).

3. Conversely, given a generalized law σ and self-adjoint a ∈ A, there exists a free/Boolean/monotone
convolution semigroup satisfying (7.1.1) and (7.1.2).

4. We have the estimates

t‖a‖ ≤ rad(µt)

rad(σ) ≤ C rad(µt)

rad(µt) ≤ rad(σ) + 2
√
t‖σ(1)‖+ t‖a‖,

where C is a constant that can be taken to be 1/(3 − 2
√

2) in the free case and 2 in the
Boolean and monotone cases.

The proof of claims (1) and (2) will be handled in the next section §7.2, while (3) and (4) will
be handled in the following section §7.3. Although claim (3) of theorem can be proved purely
analytically by solving the differential equations (see [Jek17, §5.3] for the monotone case), we
will instead approach the problem through Hilbert bimodules (as in [Spe98, §4.7]). We will
construct operators Ys,t for s < t such that

1. The law of Ys,t only depends on t− s.

2. Yt0,t1 , . . . , Ytn−1,tn are independent.

3. Yt0,t1 + · · ·+ Ytn−1,tn = Yt0,tn .

In other words, Yt = X0,t is an operator-valued stochastic process with independent and sta-
tionary increments (a Lévy process). It follows that the law µt of Y0,t forms a convolution
semigroup, and we will verify that it satisfies the given equations.

The Fock space construction also yield an alternative proof of the central limit theorem in
the case of infinitely divisible laws, with sharper estimates, which we discuss in §7.4.

In §7.5, we present a combinatorial point of view on the Fock space construction, giving an
alternative proof of some of the claims about the semigroup.

In §7.6, we relate the notions of semigroups and infinitely divisible laws. As a consequence
of Theorem 7.1.2, such laws exist in bijection with pairs (σ, a) giving the cumulant generat-
ing function. We describe the resulting Bercovici-Pata correspondence between the infinitely
divisible laws for A-valued free, Boolean, and monotone independence.

7.2 Infinitesimal Generators and Differential Equation

In this section, we prove claims (1) and (2) of Theorem 7.1.2. Since the proofs are different for
each type of independence, we will handle each in its own subsection.
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The Free Case

For background on the scalar case, see [Voi86, §4], [BV92], [BP99]. For the operator-valued
case, see [Spe98, §4.5], [PV13, §3], [Wil17, §4].

Proposition 7.2.1. Let µt be a free convolution semigroup. Then there exists a generalized
law σ such that Φµt(z) = tGσ,a(z), where a = µ(X).

Proof. Recall that Kµt(z) = Rµt(z) = Φµt(z
−1). By Theorem 4.7.2, we know that Φµt(z) is

defined for Im z ≥ 2‖Varµt(1)‖1/2. By writing

Φµt(z) = nΦµt/n(z),

we see that Φµt extends to be fully matricial for Im z ≥ 2n−1/2‖Varµt(1)‖1/2. These extensions
must agree for different values of n by the uniqueness theorem. Taking n → ∞, we see that
Φµt extends to be fully matricial on H+(A).

Moreover, by Theorem 4.7.2, Φµt maps H+(A) into H−(A) and Φ̃µt is fully matricial in a

neighborhood of 0 and preserves adjoints. If we let at = µt(X), then Φ̃µt(0)−a = 0. Therefore,
by Theorem 3.4.1, we have

Φµt(z) = at +Gσt(z)

for some generalized law σt.

Because we assumed that at is continuous in t and as+t = as + at, we have at = ta where
a = a1. Letting σ = σ1, we have Gσt = tGσ for rational values of t. Moreover, σt(1) is an
increasing function of t, which forces σt(1) = tσ(1) for all real t ≥ 0. Since Im z ≥ ε implies that
‖Gσt(z)‖ ≤ t‖σ(1)‖/ε, we see that Gσt depends continuously on t and hence Gσt = tGσ for all
real t ≥ 0. This completes the proof that tGσ,a(z) is the free cumulant generating function of
µt.

Lemma 7.2.2. Let µt and Gσ,a be as in the previous proposition. Then for δ > 0,

Ft+δ(z) = Ft(z − δGσ,a(Ft+δ(z))).

Proof. Recall that for Im z sufficiently large, Fµt is invertible with inverse function given by
z + tGσ,a(z). From this it follows that for δ > 0,

Ft+δ(z) = Ft ◦ (id +tGσ,a) ◦ Ft+δ(z)
= Ft(Ft+δ(z) + tGσ,a(Ft+δ(z))).

But we also have

z = Ft+δ(z) + (t+ δ)Gσ,a(Ft+δ(z)),

and hence

Ft+δ(z) = Ft(z − δGσ,a(Ft+δ(z))).

Lemma 7.2.3. For a free convolution semigroup µt, ε > 0 and T > 0, the function Ft(z) is
uniformly Lipschitz in t for Im z ≥ ε and t ≤ T , where the Lipschitz constant only depends on
‖Varµ1

(1)‖, T , and ε.
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Proof. Recall that Ft(z) − z + ta is the Cauchy transform of a generalized law ρ with ρ(1) =
Varµt(1) = tσ(1). Hence for z, z′ in the same size matrix algebra with imaginary part ≥ ε, we
have

‖Ft(z)− Ft(z′)‖ ≤
(

1 +
t‖σ(1)‖
ε2

)
‖z − z′‖.

Now examining Lemma 7.2.2, we see that for Im z ≥ ε,

‖Ft+δ(z)− Ft(z)‖ ≤
(

1 +
t‖σ(1)‖
ε2

)
δ‖Gσ,a(Ft+δ(z))‖

≤
(

1 +
t‖σ(1)‖
ε2

)
‖σ(1)‖
ε2

δ.

Thus, Ft is depends in a Lipschitz way on t for t in a compact time interval [0, T ].

Proposition 7.2.4. Let µt be a free convolution semigroup and Φµt = tGσ,a. Then

∂tFt(z) = DFt(z)[−Gσ,a(Ft(z))].

Proof. Using Lemma 7.2.2, we see that t ≤ T ,

Ft+δ(z)− Ft(z) = Ft(z − δGσ,a(FT+δ(z)))− Ft(z)
= −δ ·DFt(z)[Gσ,a(Ft+δ(z))] +OT,ε,σ(δ2)

= −δ ·DFt(z)[Gσ,a(Ft(z))] +OT,ε,σ(δ2).

This proves that the derivative of Ft(z) from the right is −DFt(z)[Gσ,a(Ft(z))] as desired. The
derivative from the left is handled similarly. To wit, for δ > 0,

Ft(z)− Ft−δ(z) = Ft−δ(z − δGσ,a(Ft(z)))− Ft−δ(z)
= −δ ·DFt−δ(z)[Gσ,a(Ft(z))] +OT,ε,σ(δ2)

= −δ ·DFt(z)[Gσ,a(Ft(z))] +OT,ε,σ(δ2),

where the last equality follows by applying the Cauchy estimates Lemma 2.4.2 to bound the
first derivative of Ft(z)− Ft−δ(z).

The Boolean Case

For background, see [SW97] and [PV13, §2].

Proposition 7.2.5. Let {µt} be a Boolean convolution semigroup. Then Bµt(z) = tGσ,a for
some generalized law σ, with a = µ(X). We also have

∂tFt(z) = −Gσ,a(z).

Proof. We already know from Theorem 3.5.3 that Bµt(z) = Gσt,at(z) for some generalized law
σt and at = µt(X). The same argument as in the free case shows that Gσt,at has the form
tGσ,a where σ = σ1 and a = a1.

Thus, we have Bµt(z) = tGσ,a(z) and Fµt(z) = z − tGσ,a(z), which implies

∂tFµt(z) = −Gσ,a(z).
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The Monotone Case

For background on the scalar case, see [Has10a], [Has10b], [HS11b]. For the operator-valued
case, see [HS14],[AW16], [Jek17].

Suppose that µt is a monotone convolution semigroup. As in the previous cases, we have
µt(X) = ta for some self-adjoint a ∈ A. By Theorem 3.5.3, there exists a generalized law σt

Fµt(z) = z − ta−Gσt(z) = z −Gσt,ta(z).

We will show that t−1Gσt,ta(z) converges to some function Gσ,a(z) as t→ 0 along the sequence
2−k, and that this limit satisfies the differential equations given in Theorem 7.1.2. Then using
Theorem 5.6.8, we identify G̃σ,a(z) as the monotone cumulant generating function. We begin
with some basic estimates which show that Gσt,ta and Fµt depend continuously on t.

Lemma 7.2.6. Let s ≤ t. Then

1. ImGσs(z) ≥ ImGσt(z) for z ∈ H+(A).

2. rad(σs) ≤ rad(σt).

3. ‖Gσt(z)−Gσs(z)‖ ≤ (t− s)‖Varµ1
(1)‖/ε for Im z ≥ ε.

Proof. To prove (1), observe that for s ≤ t,

ImFµt(z) = ImFµt−s ◦ Fµs(z) ≥ ImFµs(z),

and hence

ImGσt(z) ≤ ImGσs(z).

Now Corollary 3.4.8 verifies the claim (2) as well as the fact that for Im z ≥ ε,

‖Gσt(z)−Gσs(z)‖ ≤ ‖σt(1)− σs(1)‖/ε = (t− s)‖Varµ1
(1)‖/ε.

As preparation to evaluating the limit of t−1Gσ2t,2ta as t→ 0, we show that (2t)−1Gσ2t,2ta

is close to t−1Gσt,ta.

Lemma 7.2.7. We have for Im z ≥ ε that∥∥∥∥ 1

2t
Gσ2t

(z)− 1

t
Gσt(z)

∥∥∥∥ ≤ Cµ1,εt.

Proof. The identity Fµ2t = Fµt ◦ Fµt yields

z + 2ta+Gσ2t
(z) = (z + ta+Gσt(z)) + ta+Gσt(z + ta+Gσt(z)).

and hence

Gσ2t
(z) = Gσt(z)) +Gσt(z + ta+Gσt(z))

or

Gσ2t(z)− 2Gσt(z) = Gσt(z + ta+Gσt(z))−Gσt(z).
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If we assume that Im z ≥ ε, then

‖Gσt(z + ta+Gσt(z))−Gσt(z)‖ ≤
‖σt(1)‖
ε2

‖ta+Gσt(z)‖

≤ ‖σt(1)‖
ε2

(
t‖a‖+

‖σt(1)‖
ε2

)
≤ t2 ‖Varµ1

(1)‖
ε2

(
‖a‖+

‖Varµ1
(1)‖

ε2

)
.

Therefore, dividing by 2t, we obtain∥∥∥∥ 1

2t
Gσ2t(z)−

1

t
Gσt(z)

∥∥∥∥ ≤ Cµ1,εt.

Lemma 7.2.8. Let µt be a monotone convolution semigroup and a = µ1(X). Then there exists
a generalized law σ such that

∂tFµt(z) = −Gσ,a(Fµt(z)).

Proof. From the previous lemma, we have∥∥2k+1Gσ
2−k−1

(z)− 2kGσ
2−k

(z)
∥∥ ≤ 2−kCµ1,ε.

This implies that limk→∞ 2kGσ
2−k

(z) exists. By Lemma 3.6.4 and Proposition 3.6.5, the limit
function has the form Gσ(z) for some generalized law σ. We also have σ(1) = Varµ1

(1).
Moreover, we have the explicit rate of convergence

‖2kGσ
2−k

(z)−Gσ(z)‖ ≤ 2−k+1Cµ1,ε.

Now, to prove the differential equation, it suffices to show that

Fµt(z)− z =

∫ t

0

−Gσ,a(Fµs(z)) ds,

where the latter is well-defined as a Riemann integral since Gσs and hence Fµs and Gσ,a(Fµs)
are continuous functions of s (uniformly for Im z ≥ ε).

In fact, by continuity of Fµt , it suffices to prove the integral equality when t is a dyadic
rational, that is, t = 2−mn for some m ∈ Z and n > 0. Fix such a value of t and let k ≥ m.
Then

Fµt(z)− z =

2k−mn−1∑
j=0

[Fµ
2−k(j+1)

(z)− Fµ
2−kj

(z)]

=

2k−mn∑
j=1

[Fµ
2−k
◦ Fµ

2−kj
(z)− Fµ

2−kj
(z)]

=

2k−mn∑
j=1

−Gσ
2−k ,2

−ka ◦ Fµ2−kj
(z).

We can replace Gσ
2−k ,2

−ka by 2−kGσ,a at the cost of a small error since for Im z ≥ ε, we have

‖Gσ
2−k

(z)− 2−kGσ,a(z)‖ ≤ 2−2k+1Cµ1,ε.



7.2. INFINITESIMAL GENERATORS AND DIFFERENTIAL EQUATION 125

We can also replace 2−kGσ,a(Fµ
2−kj

(z)) by
∫ 2−k(j+1)

2−kj
Gσ,a(Fµs(z)) ds with an error bounded by

∫ 2−k(j+1)

2−kj

∥∥∥Gσ,a(Fµs(z))−Gσ,a(Fµ
2−kj

(z))
∥∥∥ ds

≤‖σ(1)‖
ε2

∫ 2−k(j+1)

2−kj

∥∥∥Fµs(z)− Fµ2−kj
(z)
∥∥∥ ds

=
‖σ(1)‖
ε2

∫ 2−k(j+1)

2−kj

∥∥∥Gσs(z)−Gσ2−kj
(z)
∥∥∥ ds

≤‖σ(1)‖2

ε3
2−2k

Overall, this yields

∥∥∥∥Fµt(z)− z − ∫ t

0

Gσ,a(Fs(z)) ds

∥∥∥∥ ≤ 2k−mn∑
j=0

∥∥∥∥∥Gσ2−k ,2
−ka ◦ Fµ2−kj

(z)−
∫ 2−k(j+1)

2−kj

Gσ,a ◦ Fµs(z) ds

∥∥∥∥∥
≤ 2(k−m)n · (2Cµ1,ε + ‖σ(1)‖ε−3) · 2−2k

= 2−kt(2Cµ1,ε + ‖σ(1)‖ε−3).

By taking k → +∞, we obtain equality and hence we have established the differential equation.

Lemma 7.2.9. Let µt be a monotone convolution semigroup and a = µ1(X). Let σ be the
generalized law given in the previous lemma. Let DFµt(z) denote ∆Fµt(z, z). Then Fµt also
satisfies the differential equation

∂tFµt(z) = −DFµt(z)[Gσ,a(z)].

Proof. Let t, δ > 0. By the preceding arguments, for Im z ≥ ε,

Fµδ(z)− z = −
∫ δ

0

Gσ,a(Fµδ(z)) ds = −δGσ,a(z) +Oµ1,ε(δ
2).

This implies that for Im z ≥ ε that

Fµt+δ(z) = Fµt ◦ Fµδ(z)− Fµt(z)
= DFµt(z)[Fµδ(z)− z] +Oµ1,ε(tδ

2)

= −DFµt(z)[Gσ,a(z)] +Oµ1,ε((1 + t)δ2),

where the error bounds again follow from Lemma 7.2.6 and from applying a priori estimates
on the Cauchy-Stieltjes transform to estimate DFµt(z) = id−DGσt,at(z). This proves that
the derivative from the right of Fµt(z) is −DFµt(z)[Gσ,a(z)]. But because DFµt(z)[Gσ,a(z)] is
continuous in t and the error estimates are uniform on a compact time interval, the derivative
from the left is also −DFµt(z)[Gσ,a(z)].

Lemma 7.2.10. With the setup above, tG̃σ,a(z) is the monotone cumulant generating function
for the law µt.
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Proof. Let inv be the fully matricial function z 7→ z−1. Recalling thatD inv(z)[w] = −z−1wz−1,
we have

∂t[G̃µt(z)] = ∂t[inv ◦Fµt ◦ inv(z)]

= −Fµt(z−1)−1 · ∂tFµt(z−1) · Fµt(z−1)−1

= G̃µt(z) ·Gσ,a ◦ Fµt(z−1) · G̃µt(z)
= G̃µt(z) · G̃σ,a ◦ G̃µt(z) · G̃µt(z).

Let Kµt(z) be the monotone cumulant generating function for µt. Since Kµs+t(z) = Kµs(z) +
Kµt(z) and because the moments of µt depend continuously on t, we have Kµt(z) = tKµ1

(z).
By Theorem 5.6.8, we have

∂t[G̃µt ] = G̃µt ·Kµ1
◦ G̃µt · G̃µt .

It follows that as generating functions, we have

G̃σ,a =
d

dt

∣∣
t=0

G̃µt = Kµ1
.

Thus, G̃σ,a = Kµ1
and hence tG̃σ,a = Kµt as desired.

7.3 Fock Space Realization

We now turn to the converse direction (3) of Theorem 7.1.2, in which we must construct a
semigroup µt from a constant a and a generalized law σ. We will proceed by constructing a
process Yt with independent increments which realizes the law µt, consisting of operators on a
Fock space. We also establish the estimates (4) at the end of this section.

The Fock space realization of the law µt is due to Glockner, Schürmann, and Speicher
[GSS92] in the scalar case and Speicher [Spe98, §4.7] in the operator-valued case. Popa and
Vinnikov adapted this construction to the A-valued Boolean case [PV13, Lemma 2.9]. The
author earlier studied the monotone case (in fact, without assuming stationary increments) in
[Jek17, §6]. Moreover, the construction is well-known in the case of Brownian motion (where
the law µt is semicircle/Bernoulli/arcsine).

Before dividing into cases, we establish notation for some spaces and Hilbert bimodules.

Definition 7.3.1. Let (Ω, λ) be a measure space and H a right Hilbert A-module. A simple
function is a function f : Ω→ H of the form f(ω) =

∑n
j=1 ξjχΩj (ω), where the Ωj ’s are disjoint

and measurable and ξj ∈ H. The A-valued Bochner L2 space L2(Ω,H) is the completion of the
simple functions with respect to the A-valued inner product

〈f, g〉 =

∫
Ω

〈f(ω), g(ω)〉H dλ.

Definition 7.3.2. If (Ω, λ) is a measure space and A is a C∗-algebra, then a countably-valued
simple function f : Ω→ A is a function of the form

∑∞
j=1 ajχΩj (ω) where the Ωj ’s are disjoint

and measurable. We say that such a function f is essentially bounded if

‖f‖∞ = esssup‖f(ω)‖ = sup
λ(Ωj)>0

‖aj‖

is finite. We define the Bochner L∞ space L∞(Ω,A) as the completion of essentially bounded,
countably-valued simple functions with respect to this norm.
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Observation 7.3.3. Let H be a Hilbert B-A-bimodule and (Ω, λ) a measure space. Then
L2(Ω,H) is a Hilbert L∞(Ω,B)-A-bimodule with the multiplication given by

f(ω) · g(ω) = (fg)(ω)

for a countably-valued simple function f ∈ L∞(Ω,B) and a simple function g ∈ L2(Ω,H).

The verification is straightforward and left to the reader.
For each type of independence, the base for the Fock space will be N := L2(R+,M), where

R+ = (0,+∞) with Lebesgue measure and M = A〈X〉 ⊗σ A. We remark that if B is the
C∗-algebra generated by A〈X〉 acting on M, then N is a Hilbert L∞(R+,B)-A-bimodule.

Furthermore, for 0 ≤ s < t ≤ +∞, we denote by Ns,t := L2((s, t),M). This is a Hilbert
L∞((s, t),B)-A-bimodule. Moreover, there are natural inclusion ιs,t : Ns,t → N and ι′s,t :
L∞((s, t),B)→ L∞(R+,B) given by extending a function by zero.

The Free Case

Let N be as above and let H be the free Fock space generated by N , that is,

H = Aξ ⊕
⊕
n≥1

N ⊗A · · · ⊗A N︸ ︷︷ ︸
n

.

As in §6.2, we define for ζ ∈ N the creation operator `(ζ) by

`(ζ)ξ = ζ`(ζ)[ζ1 ⊗ · · · ⊗ ζn] = ζ ⊗ ζ1 ⊗ · · · ⊗ ζn,

for ζj ∈ N . Then `(ζ) ∈ B(H) with ‖`(ζ)‖ ≤ ‖ζ‖N and `(ζ)∗ given by the annihilation operator

`(ζ)∗ξ = 0

`(ζ)∗[ζ1 ⊗ · · · ⊗ ζn] = 〈ζ, ζ1〉ζ2 ⊗ · · · ⊗ ζn.

Furthermore, given the left action of L∞(R+,B) on N , we define a left multiplication operator
m(f) for f ∈ L∞(R+,B) by

m(f)ξ = 0

m(f)[ζ1 ⊗ · · · ⊗ ζn] = fζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn.

This action is bounded with ‖m(f)‖ ≤ ‖f‖.

Proposition 7.3.4. Let a ∈ A be self-adjoint, let σ be an A-valued generalized law, and let H
be the free Fock space over N = L2(R+)⊗ (A〈X〉 ⊗σ A) described above. For t ≥ 0, define

Yt = `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + m(Xχ(0,t)) + ta.

Then Yt is a process with freely independent and stationary increments, and the laws µt of Yt
form a free convolution semigroup with infinitesimal generator Gσ,a.

For the proof, it will be convenient for s < t to denote

Ys,t = Yt − Ys = `((1⊗ 1)χ(s,t)) + `((1⊗ 1)χ(s,t))
∗ + m(Xχ(s,t)) + (t− s)a.

Thus, showing that Yt has freely independent increments means showing that for t0 < · · · < tk,
the variables Y0,t1 , . . . , YtN−1,tN are freely independent. Rather than computing joint moments,
we will prove this by expressing the Hilbert module H as a free product space.
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Let
Hs,t = Aξ ⊕

⊕
n≥1

Ns,t ⊗A · · · ⊗A Ns,t︸ ︷︷ ︸
n

.

Clearly, for Hs,t has its own creation operators `(ζ) for ζ ∈ Ns,t and multiplication operators
m(f) for f ∈ L∞((s, t),B).

Lemma 7.3.5. Let 0 < t1 < · · · < tN . Then (H, ξ) is the free product Hilbert bimodule of
(H0,t1 , ξ), . . . , (HtN−1,tN , ξ), (HtN ,∞, ξ). Moreover, the inclusion B(Htj−1,tj )→ B(H) is given
by a map ρtj−1,tj which depends only upon the pair (tj−1, tj), not upon N or the other ti’s.

Proof. Let us write Hs,t = Aξ ⊕Ks,t, where

Ks,t =
⊕
n≥1

Ns,t ⊗A · · · ⊗A Ns,t︸ ︷︷ ︸
n

.

If we denote t0 = 0 and tN+1 =∞, then the free product bimodule is

Aξ ⊕
⊕
n≥1

⊕
j1,j2,...,jn∈[N+1]

ji 6=ji+1

Ktj1−1,tj1
⊗A · · · ⊗A Ktjn−1,tjn

.

Substituting in the definition of Ks,t, we obtain

Aξ ⊕
⊕
n≥1

⊕
j1,j2,...,jn∈[N+1]

ji 6=ji+1

⊕
k1,...kn≥1

N⊗Ak1tj1−1,tj1
⊗A · · · ⊗A N⊗Akntjn−1,tjn

.

Now regrouping the terms by k = k1 + · · ·+ kn, we have

Aξ ⊕
⊕
k≥1

⊕
i1,...,ik∈[N+1]

Nti1−1,ti ⊗A · · · ⊗A Ntik−1,tik
.

By the distributive property of tensor products and the fact that N =
⊕N+1

i=1 Nti−1,ti , this is
equal to

Aξ ⊕
⊕
k≥1

N ⊗A · · · ⊗A N︸ ︷︷ ︸
k

= H.

Thus, (H, ξ) is the free product of (H0,t1 , ξ), . . . , (HtN−1,tN , ξ), (HtN ,∞, ξ).
Now consider the inclusion maps of bounded operators. For s < t, define ρs,t : B(Hs,t) →

B(H) by viewing (H, ξ) as the free product of H0,s, Hs,t, and Ht,∞. Given any t1 < · · · < tN ,
we claim that the inclusion B(Htj−1,tj )→ B(H) given by expressing (H, ξ) as the free product
of (H0,t1 , ξ), . . . , (HtN−1,tN , ξ), (HtN ,∞, ξ) is the same as ρtj−1,tj . To prove this, we note that
by the above argument, H0,tj−1

can be identified with the free product of Hti−1,ti for i < j and
similarly Htj ,∞ can be identified with the free product of Hti−1,ti for i > j. Then we invoke
the associativity properties of the free product.

Lemma 7.3.6. Let 0 ≤ s < t ≤ +∞. Let ρs,t : B(Hs,t)→ B(H) be the inclusion given by the
free product construction. Then the following diagrams commute:

L2((s, t),M) L2(R+,M)

B(Hs,t) B(H).

ιs,t

` `

ρs,t
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L∞((s, t),B) L∞(R+,B)

B(Hs,t) B(H).

ι′s,t

m m

ρs,t

In other words, for ζ ∈ Ns,t, we have ρs,t(`(ζ)) = `(ιs,t(ζ)) and for f ∈ L∞((s, t),B), we have
ρs,t(m(f)) = m(ι′s,t(f)).

Proof. Let us fix s and t, and denote N1 = N0,s, N2 = Ns,t, and N3 = Nt,∞. Define the
notations H1, H2, and H3 and K1, K2, K3 similarly.

For the first property, choose ζ ∈ Ns,t and we will show that ρs,t(`(ζ)) and `(ιs,t(ζ)) act the
same on simple tensors ζ1 ⊗ · · · ⊗ ζn (by convention, when n = 0, we interpret this expression
as ξ). By linearity, it suffices to consider the case where each ζj is either in N0,s, Ns,t, or Nt,∞.
Clearly,

`(ιs,t(ζ))[ζ1 ⊗ · · · ⊗ ζn] = ζ ⊗ ζ1 ⊗ · · · ⊗ ζn,
where ιs,t(ζ) is identified with ζ on the right hand side. On the other hand, to understand
the action of ρs,t(`(ζ)), we write the simple tensor ζ1 ⊗ · · · ⊗ ζn in terms of the free product
decomposition as

(ζ1 ⊗ · · · ⊗ ζn1
)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk),

where 0 = n0 < n1 < · · · < nk = n, the terms ζnj−1+1, . . . , ζnj all come from the same subspace
Nij with ij+1 6= ij . Note that ζnj−1+1 ⊗ · · · ⊗ ζnj ∈ Kij . Now if i1 6= 2, then we have

ρs,t(`(ζ))[(ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)]

=`(ζ)ξ ⊗ (ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)

=ζ ⊗ (ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)

as desired. On the other hand, if i1 = 2, then we have

ρs,t(`(ζ))[(ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)]

=`(ζ)[ζ1 ⊗ · · · ⊗ ζn1 ]⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)

=(ζ ⊗ ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)

as desired.
For the second property, let us again compare the action of ρs,t(m(f)) and m(ι′s,t(f)) on a

simple tensor ζ1, . . . , ζn and let nj and ij be as above. In the case where i1 6= 2, then we have
fζ1 = 0 and hence

m(ι′s,t(f))[ζ1 ⊗ · · · ⊗ ζn] = 0

while

ρs,t(m(f))[(ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)]

=m(f)ξ ⊗ (ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk) = 0.

On the other hand, if i1 = 2, then we have

m(ι′s,t(f))[ζ1 ⊗ · · · ⊗ ζn] = bζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn,

while

ρs,t(m(f))[(ζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)]

=m(f)[ζ1 ⊗ · · · ⊗ ζn1 ]⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk)

=(fζ1 ⊗ · · · ⊗ ζn1)⊗ · · · ⊗ (ζnk−1+1 ⊗ · · · ⊗ ζnk).
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Proof of Proposition 7.3.4. First, we claim that the process Yt has freely independent incre-
ments. To see this, note that by the previous lemma, we have

Ys,t = ρs,t
(
`(1⊗ 1) + `(1⊗ 1)∗ + m(X) + (t− s)a

)
and hence for 0 < t1 < · · · < tN , the variables Y0,t1 , Yt1,t2 , . . . , YtN−1,tN are freely independent.

Second, we claim that the increments are stationary, meaning that the law of Ys,t only
depends on t−s. To see this, note that L2((s, t)) is isomorphic to L2((0, t−s)) by a translation.
This leads to an isomorphism of Hs,t ∼= H0,t−s which respects the creation, annihilation, and
multiplication operators. Hence, Ys,t has the same law as Y0,t−s.

Third, we claim that the law µt of Yt forms a free convolution semigroup. Indeed, µs+t =
µs � µt because Ys+t = Ys + Ys,s+t, where Ys,s+t ∼ Yt. Also, the mean µt(X) = ta which is
clearly continuous.

Finally, we claim that Gσ,a is the infinitesimal generator of this semigroup. We proved in
the last section that an infinitesimal generator Gσ′,a′ exists and that

−Gσ′,a′ =
d

dt

∣∣∣
t=0

Fµt .

Thus, to show that Gσ,a = Gσ′,a′ , it suffices to show that the time-derivative of Fµt at t = 0 is
−Gσ,a. Let us use the abbreviated notation `t = `(χ(0,t)⊗ 1) and mt = m(χ(0,t)⊗X), and note

that ‖`t‖ ≤ t1/2‖σ(1)‖ and ‖mt‖ ≤ rad(σ). Now for Im z ≥ ε, we have from the Taylor-Taylor
expansion of inv that

(z −mt − `t − `∗t − ta)−1 = (z −mt)
−1 + (z −mt)

−1(`t + `∗t + ta)(z −mt)
−1

+ (z −mt)
−1(`t + `∗t )(z −mt)

−1(`t + `∗t )(z −mt)
−1 +Oε(t

3/2),

where the equality holds for sufficiently small t since ‖`t + `∗t ‖ = O(t1/2) and ‖ta‖ = O(t). In
order to compute 〈ξ, (z − Yt)−1ξ〉, we first observe that because mt|Aξ = 0,

(z −mt)
−1ξ = z−1ξ = ξz−1,

hence
〈ξ, (z −mt)

−1ξ〉 = z−1.

For the next term, we have

〈ξ, (z −mt)
−1(`t + `∗t + ta)(z −mt)

−1ξ〉 = 〈ξ, z−1(`t + `∗t + ta)z−1ξ〉 = t · z−1az−1.

Finally,

〈ξ, (z −mt)
−1(`t + `∗t )(z −mt)

−1(`t + `∗t )(z −mt)
−1ξ〉

= 〈(`t + `∗t )(z
∗ −mt)

−1ξ, (z −mt)
−1(`t + `∗t )z

−1ξ〉
= 〈(`t + `∗t )ξ(z

∗)−1, (z −mt)
−1(`t + `∗t )ξz

−1〉
= z−1〈`tξ, (z −mt)

−1`tξ〉z−1

= z−1〈(1⊗ 1)χ(0,t), (z − χ(0,t) ⊗X)−1(1⊗ 1)χ(0,t)〉L2(R+,M)z
−1

= t · z−1σ((z −X)−1)z−1.

Altogether,

Gµt(z) = 〈ξ, (z − Yt)−1ξ〉 = z−1 + t · z−1az−1 + t · z−1σ((z −X)−1)z−1 +Oε(t
3/2)

= z−1 + t · z−1Gσ,a(z)z−1 +Oε(t
3/2).



7.3. FOCK SPACE REALIZATION 131

Hence, again using the Taylor-Taylor expansion of inv,

Fµt(z) = z − tGσ,a(z) +Oε(t
3/2),

so that the derivative of Fµt at t = 0 is −Gσ,a as desired.

The Boolean Case

Let N = L2(R+,M) as above, and let H be the Boolean Fock space generated by N , that is,

H = Aξ ⊕N .

As in §6.2, we define for ζ ∈ N the creation operator `(ζ) by

`(ζ)ξ = ζ`(ζ)|N = 0.

Then `(ζ) ∈ B(H) with ‖`(ζ)‖ ≤ ‖ζ‖N and `(ζ)∗ given by the annihilation operator

`(ζ)∗ξ = 0

`(ζ)∗ζ ′ = 〈ζ, ζ ′〉ξ.

Furthermore, given the left action of L∞(R+,B) on N , we can define a left multiplication
operator m(f) for f ∈ L∞(R+,B) by

m(f)ξ = 0

m(f)ζ = fζ for ζ ∈ N .

This action is bounded with ‖m(f)‖ ≤ ‖f‖. We aim to prove the following.

Proposition 7.3.7. Let a ∈ A be self-adjoint, let σ be an A-valued generalized law, and let H
be the Boolean Fock space over N = L2(R+) ⊗ (A〈X〉 ⊗σ A) described above. Let P ∈ B(H)
denote the projection onto Aξ. For t ≥ 0, define

Yt = `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + m(Xχ(0,t)) + taP.

Then Yt is a process with Boolean independent and stationary increments, and the laws µt of
Yt form a free convolution semigroup with infinitesimal generator Gσ,a.

The outline of the proof is the same as in the free case, and the individual steps are easier,
so we will leave some details to the reader. For s < t, we denote

Ys,t = Yt − Ys = `((1⊗ 1)χ(s,t)) + `((1⊗ 1)χ(s,t))
∗ + m(Xχ(s,t)) + (t− s)aP.

We next express H as a Boolean product space in order to show that Y0,t1 , . . . , YtN−1,tN are
Boolean independent for t0 < · · · < tk.

For 0 ≤ s < t ≤ +∞, we will denote by Ns,t the space L2((s, t))⊗M. This space is a left
module over L∞((s, t))⊗A〈X〉. We also denote Hs,t = Aξ⊕Ns,t, where ξ is an A-central unit
vector.

Lemma 7.3.8. Let 0 < t1 < · · · < tN . Then (H, ξ) is the Boolean product Hilbert bimodule of
(H0,t1 , ξ), . . . , (HtN−1,tN , ξ), (HtN ,∞, ξ). Moreover, the inclusion B(Htj−1,tj )→ B(H) is given
by a map ρtj−1,tj which depends only upon the pair (tj−1, tj), not upon N or the other ti’s.
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Proof. Given 0 < t1 < · · · < tN , we have

N = N0,t1 ⊕Nt1,t2 ⊕ · · · ⊕ NtN−1,tN ⊕NtN ,∞.

From this, it is is immediate that (H, ξ) is the Boolean product space of (Htj−1,tj , ξ) for j = 1
to N + 1, where we denote t0 = 0 and tN+1 = +∞.

Let ρs,t : B(Hs,t) → B(H) be the inclusion given by viewing H as the Boolean product of
(H0,s, ξ), (Hs,t, ξ), and (Ht,+∞, ξ). Explicitly, ρs,t(x) is given by viewing H = Hs,t ⊕ N0,s ⊕
Nt,+∞ and setting

ρs,t(x)|Hs,t = x, ρs,t(x)|H⊥s,t = 0.

It straightforward to check that inclusion map B(Htj−1,tj ) → B(H) for a given choice of
0 < t1 < · · · < tN agrees with the map ρtj−1,tj defined above.

Lemma 7.3.9. Let 0 ≤ s < t ≤ +∞. Let ρs,t : B(Hs,t) → B(H) be the inclusion given by
the Boolean product construction. Then for ζ ∈ Ns,t, we have ρs,t(`(ζ)) = `(ιs,t(ζ)) and for
f ∈ L∞((s, t),B), we have ρs,t(m(f)) = m(ι′s,t(f)). Also, if Ps,t ∈ B(Hs,t) is the projection
onto Aξ, then we have ρs,t(Ps,t) = P .

The verification is straightforward, especially after knowing the free case, so we leave it to
the reader.

Proof of Proposition 7.3.7. Ro show that Yt has Boolean independent increments, observe that

Ys,t = ρs,t
(
`(1⊗ 1) + `(1⊗ 1)∗ + m(X) + (t− s)Ps,ta

)
and hence for 0 < t1 < · · · < tN , the variables Y0,t1 , Yt1,t2 , . . . , YtN−1,tN are Boolean indepen-
dent.

To show that the increments are stationary, one proceeds as in the free case by arguing
that time-translation produces an isomorphism Hs,t ∼= H0,t−s which respects the creation,
annihilation, and multiplication operators. From this, one concludes that the law µt of Yt
produces a Boolean convolution semigroup.

To show that the infinitesimal generator of this semigroup equals Gσ,a, it suffices to show
that d

dt |t=0Fµt = −Gσ,a. We have for Im z ≥ ε that

(z −mt − `t − `∗t − ta)−1 = (z −mt)
−1 + (z −mt)

−1(`t + `∗t + taP )(z −mt)
−1

+ (z −mt)
−1(`t + `∗t )(z −mt)

−1(`t + `∗t )(z −mt)
−1 +Oε(t

3/2).

Arguing just as in the free case, we obtain

〈ξ, (z − Yt)−1ξ〉 = 〈ξ, (z −mt − `t − `∗t − ta)−1ξ〉 = z−1 + t · z−1Gσ,a(z)z−1 +Oε(t
3/2),

and hence

Fµt(z) = z − tGσ,a(z) +Oε(t
3/2),

which completes the proof.
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The Monotone Case

Let C := C([0,+∞],A) ⊆ L∞(R+,A). We define a sesquilinear form I : N ×N → C by

I(f, g)(t) =

∫ +∞

t

〈f(s), g(s)〉M ds = 〈f, χ(t,+∞)g〉N .

The verification that I(f, g) is in C([0,+∞],A) is straightforward, and we also remark that

‖I(f, f)‖L∞(R+,A) = ‖f‖2N
Now we define

N̂ = N ⊗I C
as the completion of the algebraic tensor product with respect to the pre-inner product given
on simple tensors by

〈f ⊗ φ, g ⊗ ψ〉 = φ∗I(f, g)ψ.

Positivity of this pre-inner product follows from a similar argument as we used for tensor
products of Hilbert bimodules in §1.3 and for the operator-valued GNS construction in §1.4.
Moreover, N̂ is a Hilbert L∞(R+,B)-C-bimodule.

We can define a map N → N̂ by f 7→ f ⊗ 1. Although the two spaces are right Hilbert
modules over different algebras, this map is isometric (and hence an embedding of Banach
spaces) because ‖I(f, f)‖L∞(R+,A) = ‖f‖2N .

We define the monotone Fock space generated by N as

H = A⊕
⊕
n≥1

N̂ ⊗L∞(R+,A) · · · ⊗C N̂︸ ︷︷ ︸
n−1

⊗CN .

For ζ ∈ N , we define the creation operator `(ζ) by

`(ζ)ξ = ζ

`(ζ)[ζ̂1 ⊗ · · · ⊗ ζ̂n−1 ⊗ ζn] = (ζ ⊗ 1)⊗ ζ̂1 ⊗ · · · ⊗ ζ̂n−1 ⊗ ζn],

where ζ̂j ∈ N̂ . One can check that ‖`(ζ)‖ ≤ ‖ζ‖N and that the adjoint is given by the
annihilation operator

`(ζ)∗ξ = 0

`(ζ)∗ζ1 = 〈ζ, ζ1〉N ξ

`(ζ)∗[ζ̂1 ⊗ · · · ⊗ ζ̂n−1 ⊗ ζn] = 〈ζ ⊗ 1, ζ̂1〉N̂ ζ̂2 ⊗ · · · ⊗ ζ̂n−1 ⊗ ζn.

Moreover, for f ∈ L∞(R+,B), we define the multiplication operator m(f) to act by zero on Aξ
and by left multiplication of the first coordinate by f on each of the tensor powers which make
up H. One can check that ‖m(f)‖ ≤ ‖f‖. We aim to prove the following.

Proposition 7.3.10. Let σ be an A-valued generalized law, let a be a self-adjoint element of
A. Let H be as above. Let χ(s,t) be the indicator function of (s, t), let φs,t(x) =

∫∞
x
χs,t, let

P ∈ B(H) be the projection onto Aξ, and let

Qs,t = (t− s)P + m(φs,t).

Let Yt ∈ B(H) be given by

Yt = `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t)) + m(Xχ(0,t)) + aT0,t

Then Yt is a process with monotone independent and stationary increments. The laws µt of Yt
form a monotone convolution semigroup with infinitesimal generator Gσ,a.
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Observe that since χ(0,s)+χ(s,t) = χ(0,t) a.e., we have φ0,s+φs,t = φ0,t and hence T0,s+Qs,t =
T0,t. This implies that

Ys,t := Yt − Ys = `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t)) + m(Xχ(0,t)) + aT0,t.

As before, we show that Y0,t1 , . . . , Y0,tN are monotone independent by expressing H as a
monotone product of subspaces Hs,t. There is more to do than in the free and Boolean cases
because of the more complicated structure of H.

We define Hs,t in the same way as H except using the interval [s, t] rather than [0,+∞]. Ex-

plicitly, let Cs,t = C([s, t],A) and define Is,t : Ns,t×Ns,t → Cs,t by Is,t(f, g)(x) =
∫ t
x
〈f(y), g(y)〉M dy

and let

N̂s,t := Ns,t ⊗Is,t Cs,t

Then define Hs,t similarly to H except using Cs,t rather than C. The space Hs,t has similarly
defined creation, annihilation, and multiplication operators.

Note that there is an inclusion εs,t : Cs,t → C given by extending a function to be constant
on [0, s] and on [t,+∞]. Together with the inclusion ιs,t : Ns,t → N , this defines an isometric
injection

ι̂s,t : N̂s,t → N̂ .

The image ι̂s,t(N̂s,t) is a left L∞(R+,B) module. Moreover, ι̂s,t(N̂s,t) is a right εs,t(Cs,t)
submodule of N̂ and the inclusion ι̂s,t is an L∞((s, t),B)-Cs,t-bimodule map, where L∞((s, t),B)
is viewed as a subspace of L∞(R+,B) using the map ι′s,t.

Henceforth, we will identify N̂s,t as a subspace of N̂ . We also denote by N̂s,tC the closed
right C-submodule which it generates. Now given 0 = t0 < t1 < · · · < tN < tN+1 = +∞,

the subspaces N̂tj−1,tj are orthogonal in N̂ because I(f, g) = 0 if f and g in L2(R+,M) have
disjoint support. Moreover, because the spaces Ntj−1,tj span N , we have

N̂ =

N+1⊕
j=1

N̂tj−1,tjC.

Proceeding as in the free case, we will use this direct sum decomposition and the distributive
property of tensor products to expand H into a monotone product space. This computation
relies on the following lemma.

Lemma 7.3.11. Let s < t ≤ s′ < t′. Then

N̂s,tC ⊗C N̂s′,t′C = 0

N̂s,tC ⊗C Ns′,t′ = 0,

N̂s′,t′C ⊗C N̂s,tC ∼= Ns′,t′ ⊗A N̂s,tC

N̂s′,t′C ⊗C Ns′,t′ ∼= Ns′,t′ ⊗A Ns,t
N̂s,tC ⊗C N̂s,tC ∼= N̂s,t ⊗Cs,t N̂s,tC

N̂s,tC ⊗C Ns,t ∼= N̂s,t ⊗Cs,t Ns,t,

where the isomorphisms in the last four lines are given by the natural map defined explicitly
below. In the fifth and sixth lines, the left action of Cs,t on N̂s,t is defined by viewing Cs,t ⊆
L∞((s, t),B) or equivalently Cs,t ⊆ L∞(R+,B) by extension by zero.
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Proof. Consider the first claim. Recalling the definition of N̂s,t, we rewrite the tensor product
as

(Ns,t ⊗Is,t Cs,t)C ⊗C (Ns′,t′ ⊗Is′,t′ Cs′,t′)C.

Consider a simple tensor (f1⊗ c1)c′1⊗ (f2⊗ c2)c′2. The inner product of this element with itself
is given by

(c′2)∗c∗2Is′,t′
(
f2, (c

′
1)∗c∗1Is,t

(
f1, f1

)
c1c
′
1f2

)
c2c
′
2 = (c2c

′
2)∗Is′,t′

(
(c1c

′
1)f2, Is,t

(
f1, f1

)
(c1c

′
1)f2

)
(c2c

′
2).

Now Is,t(f1, f1) is identically zero on [t,+∞), while f2 is supported in [s′, t′] ⊆ [t,+∞). There-
fore, Is,t(f1, f1)(c1c

′
1)f2 = 0. This shows that the simple tensors are zero and hence the whole

space N̂s,tC ⊗C N̂s,t′C is zero. The proof of the second claim is similar.
For the third claim, we want to define a map

w : Ns′,t′ ⊗A N̂s,tC → N̂s′,t′C ⊗C N̂s,tC

by
f ⊗A gc 7→ (f ⊗ 1)⊗C gc,

where f ∈ Ns,t, g ∈ N̂s′,t′ , and c ∈ C. Consider two such elements f1 ⊗ g1c1 and f2 ⊗ g2c2.
Then

〈f1 ⊗A g1c1, f2 ⊗A g2c2〉 = c∗1〈g1, 〈f1, f2〉Ns,tg2〉N̂s′,t′ c
∗
2,

while on the other hand the inner product between their desired images under w is given by

〈(f1 ⊗ 1)⊗C g1c1, (f2 ⊗ 1)⊗C g2c2〉 = c∗1〈g1, I(f1, f2)g2〉N̂s′,t′ c
∗
2.

But since f1 and f2 are support in [s, t], the function I(f1, f2) is constant on (0, s) and equal
to 〈f1, f2〉Ns,t ∈ A. The functions g1 and g2 are supported in [0, s] and hence we can replace
I(f1, f2) by 〈f1, f2〉Ns,t . Thus, the two inner products are the same. This shows that the map
w is well-defined and isometric.

It is also clearly an L∞(R+,B)-C-bimodule map. It only remains to show that w is surjective.
For this purpose, it suffices to show that the image contains simple tensors (f ⊗ c) ⊗C gc′ for

f ∈ Ns′,t′ , c, c′ ∈ C and g ∈ N̂s,t. But

(f ⊗ c)⊗C gc′ = (f ⊗ 1)⊗C cgc′ = w(f ⊗A (cg)c′).

The proof of the fourth claim is similar.
For the fifth claim, we want to define a map

w : N̂s,t ⊗Cs,t N̂s,tC → N̂s,tC ⊗C N̂s,tC

by
f ⊗Cs,t gc 7→ (f ⊗ 1)⊗C gc.

To show that this map is well-defined and isometric, we verify that it preserves the inner
product for pairs of simple tensors f1 ⊗Cs,t g1c1 and f2 ⊗Cs,t g2c2. The key point is that when
we compute the inner product 〈f1, f2〉N̂s,t ∈ C is multiplied by g2, which is supported in [s, t].

Thus, the values of 〈f1, f2〉N̂s,t outside [s, t] do not affect the inner product, so the answer is

the same whether we view 〈f1, f2〉N̂s,t as an element of C which is constant on [0, s] and [t,+∞]

or as an element of Cs,t ⊆ L∞((s, t),A) which is then extended to be zero on [0, s) and (t,+∞].
The proof of surjectivity of w is the same as in the previous case, and the proof of the sixth
claim is similar.
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Lemma 7.3.12. Let 0 = t0 < t1 < · · · < tN < tN+1 = +∞. The space (H, ξ) is the monotone
product Hilbert bimodule of the spaces (Htj−1,tj , ξ) for j = 1, . . . , N+1. Moreover, the inclusion
B(Htj−1,tj )→ B(H) only depends on tj−1 and tj.

Proof. As a short-hand, let us denote Hj = Htj−1,tj and define similarly the notations Nj and

N̂j and Cj . We substitute the direct sum decompositions

N̂ =

N+1⊕
j=1

NjC N =

N+1⊕
j=1

Nj

into the definition of H and obtain

H = Aξ ⊕
⊕
n≥1

⊕
j1,...,jn∈[N+1]

N̂j1C ⊗C · · · ⊗C N̂jn−1
⊗C Njn .

Now we apply Lemma 7.3.11 to simplify the tensor product. If any of the above terms has indices
jk < jk+1, then it becomes zero. The remaining terms have weakly decreasing sequences of

indices. If jk > jk+1, then we can replace N̂jk⊗C with Njk⊗A. If jk = jk+1, then we can

replace N̂jk⊗C with N̂jk⊗Cj . Therefore, we have

H ∼= Aξ ⊕
⊕
n≥1

⊕
j1>···>jm

`1+···+`m=n

(
N̂
⊗Cj1 (`1−1)

j1
⊗Cj1 Nj1

)
⊗A · · · ⊗A

(
N̂
⊗Cjm (`m−1)

jm
⊗Cjm Njm

)
,

where we have grouped the terms with the same indices together. Now we denote

Kj =
⊕
`≥1

N̂⊗Cj(`−1)
j ⊗Cj Nj ,

so that Hj = Aξ ⊕Kj . After rearrangement, we have

H = Aξ ⊕
⊕
m≥1

⊕
j1>···>jm

Kj1 ⊗A · · · ⊗A Kjm ,

which is the monotone product space of the Hj ’s.
For the second claim, let ρs,t be the inclusion B(Hs,t)→ B(H) given by the decomposition

of H as the monotone product of H0,s, Hs,t, and Ht,+∞. Then for t0, . . . , tN+1 as above
the inclusion B(Htj−1,tj ) → B(H) is given by ρtj−1,tj . This is verified by a straightforward
associativity argument similar to the free case.

Lemma 7.3.13. Let 0 ≤ s < t ≤ +∞. Let ρs,t : B(Hs,t) → B(H) be the inclusion given by
the monotone product construction. Then for ζ ∈ Ns,t, we have ρs,t(`(ζ)) = `(ιs,t(ζ)) and for
f ∈ L∞((s, t),B), we have ρs,t(m(f)) = m(ι′s,t(f)).

Proof. The verification is straightforward casework which combines the type of reasoning used
in the free case with Lemma 7.3.11. For instance, suppose that we apply ρs,t(`(ζ)) or `(ιs,t(ζ))

to a simple tensor ζ̂1⊗· · ·⊗ ζ̂n−1⊗ζn where ζ̂j ∈ N̂ and ζn ∈ N . Using the decomposition of N
into N1 = N0,s and N2 = Ns,t and N3 = Nt,+∞, we may assume that each ζ̂k belongs to N̂jk .

By Lemma 7.3.11, the indices jk must be decreasing, and the position of ζ̂1⊗ · · ·⊗ ζ̂n−1⊗ ζn in
the monotone product decomposition can be seen by grouping the terms with the same index
together.
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If ζ̂1 is from N̂3, then `(ιs,t(ζ)) acts by zero because (ζ ⊗ 1) ⊗ ζ̂1 = 0 by Lemma 7.3.11.

Meanwhile, ρs,t(`(ζ)) also acts by zero because ζ̂1 ⊗ · · · ⊗ ζ̂n−1 ⊗ ζn lies in a term of the form
K3 ⊗A . . . in the monotone product space and the index 3 is greater than the index 2 of the
space H2 = Hs,t.

On the other hand, if ζ̂1 is from N̂2 or N̂1, then we apply similar reasoning as in the free
case to show that ρs,t(`(ζ)) and `(ιs,t(ζ)) agree on ζ̂1 ⊗ · · · ⊗ ζ̂n−1 ⊗ ζn.

The details of the remaining cases are left to the reader.

Lemma 7.3.14. Let Ps,t ∈ B(Hs,t) be the projection on Aξ. We have Qs,t = ρs,t((t− s)Ps,t +
m(φs,t|(s,t))).

Proof. We claim that ρs,t(Ps,t) = P + m(χ(0,s)). It is straighforward to check that these
operators agree on Aξ. Next, using the notation N1, N2, and N3 as in the previous proof,
consider the action of these operators on a simple tensor z = ζ̂1 ⊗ · · · ⊗ ζ̂n−1 ⊗ ζn where

ζ̂k ∈ N̂jk and ζn ∈ Njn . If n1 = 1 or ζ̂1 ∈ N1 = N0,s, then z is in the direct summand K0,s of
H in the product decomposition, which is contained in (Aξ ⊕ Ks,t)⊗A K0,s. Thus, the action
of ρs,t(Ps,t) is defined to be the identity, which is the same as the action of m(χ(s,t)). On the

other hand, if ζ̂1 ∈ Ns,t or Nt,+∞, then z is in one of the summands

Ks,t, Kt,∞, Kt,∞ ⊗A Ks,t.

In the first case, ρs,t(Ps,t) acts by zero because Ps,t|Ks,t = 0, while in the other two cases it
acts by zero by construction of the monotone product. But the operator m(χ(0,s)) also acts by
zero.

Therefore, we have

ρs,t((t− s)Ps,t + m(φs,t)) = (t− s)P + (t− s)m(χ(0,s)) + m(φs,t · χ(s,t)) = (t− s)P + m(φs,t).

Proof of Proposition 7.3.10. Let us denote `s,t = `((1 ⊗ 1)χ(s,t)) and ms,t = m(Xχ(s,t)). It
follows from the previous lemmas that

Ys,t = `s,t + `∗s,t + ms,t + aQs,t

= `s,t + `∗s,t + ms,t + aQs,t

= ρs,t
(
`(1⊗ 1) + `(1⊗ 1) + m(X) + a[(t− s)Ps,t + m(φs,t)]

)
.

Therefore, for 0 = t0 < · · · < tN , the operators Ytj−1,tj are monotone independent.

Now time-translation furnishes an isomorphism between N̂s,t and N̂0,t−s and between Ns,t
and N0,t−s. Hence, there is an isomorphism Hs,t ∼= H0,t−s which respects the creation, anni-
hilation, and multiplication operators. It follows that Ys,t has the same law as Y0,t−s. Thus,
Yt has monotone independent and stationary increments, so that the laws µt of Yt for t ∈ R+

form a monotone convolution semigroup.
To show that the infinitesimal generator of this semigroup is Gσ,a, it suffices to differentiate

Fµt at t = 0 as in the free and Boolean cases. Letting `t = `0,t and mt = m0,t, we have Im z ≥ ε
that

(z − Yt)−1 = (z −mt)
−1 + (z −mt)

−1(`t + `∗t + aTt)(z −mt)
−1

+ (z −mt)
−1`∗t (z −mt)

−1`t(z −mt)
−1 +Oε(t

3/2).
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From this, we compute that

Gµt(z) = 〈ξ, (z − Yt)−1ξ〉 = z−1 + t · z−1Gσ,a(z)z−1 +Oε(t
3/2),

and hence Fµt(z) = z − tGσ,a(z) +Oε(t
3/2) as desired.

Radius Estimates and Concluding Remarks

We have now completed the proof of the converse direction (3) in Theorem 7.1.2. To finish the
proof of the theorem, we must establish the radius estimates (4).

Proof of Theorem 7.1.2 (4). The estimate t‖a‖ ≤ rad(µt) is immediate since ta = µt(X).
Consider the second estimate, rad(σ) ≤ C rad(µt). For the free case, we showed in Theorem

4.7.2 that Rµt is fully matricial on B(0, (3−2
√

2)/ rad(µt)). Since Rµt = tG̃σ,a, this shows that
rad(σ) ≤ rad(µt)/(3 − 2

√
2). For the Boolean case, we have rad(σ) ≤ 2 rad(µt) by Theorem

3.5.3. For the monotone case, recall that if Fµt(z) = z−Gσt,ta(z), then Gσ,a = limt→0 t
−1Gσt,ta.

As in the Boolean case, rad(σt) ≤ 2 rad(µt). Also, rad(σt) is increasing in t. Thus, rad(σ) ≤
2 rad(µt).

The third estimate rad(µt) ≤ rad(σ) + 2
√
t‖σ(1)‖ + t‖a‖ follows from the Fock space

construction. Indeed, the law µt is realized by the operator

Yt =


m(Xχ(0,t)) + `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))

∗ + ta, free case,

m(Xχ(0,t)) + `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + taP, Boolean case,

m(Xχ(0,t)) + `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + aT0,t, monotone case.

We have

‖m(Xχ(0,t))‖ ≤ rad(σ),

‖`((1⊗ 1)χ(0,t))‖ ≤ ‖(1⊗ 1)χ(0,t)‖ =
√
t‖σ(1)‖,

and the last term can be estimated by t‖a‖.

There are a few more facts about the Fock space construction that deserve comment. First,
although there is no distinction between monotone and anti-monotone convolution semigroups,
there is a distinction for processes with independent increments. Given a generalized law σ
and a self-adjoint constant a, one can construct a process with anti-monotone independent
and stationary increments with Gσ,a as its infinitesimal generator. The construction is almost
identical to the monotone case with the following changes.

1. The operator I is given by

I(f, g)(t) =

∫ t

0

〈f(s), g(s)〉M ds = 〈f, χ(t,+∞)g〉N .

rather than the integral from t to +∞.

2. The function φs,t is replaced by
∫ x

0
χ(s,t)(y) dy.

3. In Lemma 7.3.11, for the first four statements, the roles of (s, t) and (s′, t′) are reversed.

4. These changes are carried through the proofs justifying the construction.
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Now if we restrict our attention to a finite time interval [0, T ], the monotone and anti-
monotone constructions are related in a natural way through time-reversal. Indeed, the space
Hmonotone
s,t can be mapped isomorphically onto Hanti-monotone

T−t,T−s by time reversal, and this respects

the creation and annihilation operators. Under this isomorphism, Y monotone
s,t corresponds to

Y anti-monotone
T−t,T−s . More generally, if (Yt)t∈[0,T ] is a process with monotone independent and sta-

tionary increments, then (YT − YT−t)t∈[0,T ] is a process with anti-monotone independent and
stationary increments.

The difference between the monotone and anti-monotone versions is also reflected in the
two distinct differential equations for monotone convolution semigroups. In the monotone case,
we can derive one of the equations as follows. From time t to time t + ε, we observe a change
from Yt to Yt+ε and hence from µt to µt � µε. This leads to a change from Fµt to Fµt ◦Fµε , so
that

Fµt+ε(z)− Fµt(z) ≈ DFµt(z)[Fµε(z)− z] ≈ ε ·DFµt(z)[Gσ,a(z)].

Meanwhile, in the anti-monotone case, we observe a change from µt to µt � µε or from Fµt to
Fµε ◦ Fµt . Thus,

Fµt+ε(z)− Fµt(z) ≈ (Fµε − id) ◦ Fµt(z) ≈ ε ·Gσ,a ◦ Fµt(z).

We also remark that the “drift term” corresponding to the constant a was handled in
different ways for each type of independence. The operator Ys,t contained the term (t− s)a in
the free case, (t − s)aPξ in the Boolean case, and Qs,t = (t − s)aPξ + am(φs,t) in the (anti-
)monotone case. However, there is a unifying point of view. One can modify the construction of
the preceding sections to replaceM = A〈X〉 ⊗σ A byM′ = A〈X〉 ⊗σ A⊕Ah for an A-central
unit vector h. Then considering the vector hχ(s,t) ∈ L2(R+,M′), we have

`(hχ(s,t))
∗`(hχ(s,t)) =


(t− s), free case,

(t− s)Pξ, Boolean case,

Qs,t, (anti-)monotone case.

(7.3.1)

7.4 The Central Limit Theorem Revisited

Brownian Motion

Recall that the semicircle, arcsine, and Bernoulli laws with mean zero and variance η : A → A
were given by the cumulant generating function Kνη (z) = η(z) in the free, Boolean, and mono-
tone cases respectively. Thus, νtη forms a convolution semigroup. The infinitesimal generator
is the function η(z−1) which is equal to the Cauchy-Stieltjes transform of the generalized law
ση : A〈X〉 → A given by p(X) 7→ η(p(0)).

The Fock space construction in the preceding section defines a process with independent and
stationary increments with the law νtη, which we call an A-valued free/Boolean/monotone/anti-
monotone Brownian motion. We leave it as an exercise for the reader to relate this to the
earlier version of the Fock space construction in §6.2 which realized the semicircle, Bernoulli,
and arcsine laws.

More generally, if we use the function Gση,a as the infinitesimal generator, we obtain a
convolution semigroup of laws νtη,ta with cumulant generating function η(z−1) + a. We call
the law νtη,ta the semicircle/Bernoulli/arcsine law of mean a and variance η and we call the
corresponding process with independent increments an A-valued free/Boolean/monotone/anti-
monotone Brownian motion with drift.
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Coupling and the Central Limit Theorem

For a convolution semigroup µt with infinitesimal generator Gσ,a, we realized the µt by an
operator on a Fock space, namely

Yt =


m(Xχ(0,t)) + `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))

∗ + ta, free case,

m(Xχ(0,t)) + `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + taP, Boolean case,

m(Xχ(0,t)) + `((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + aT0,t, monotone case.

Let

Zt =


`((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))

∗ + ta, free case,

`((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + taP, Boolean case,

`((1⊗ 1)χ(0,t)) + `((1⊗ 1)χ(0,t))
∗ + aT0,t, monotone case.

Then we claim that Zt is a Brownian motion with drift, and thus we have formed a “coupling”
between our original process and the Brownian motion.

The claim about Zt is verified with the same arguments we used for Yt. One checks first
that Zt−Zs is contained in ρs,t(B(Hs,t)), so that Zt is a process with independent increments,
and stationarity follows from time translation. Moreover, for Im z ≥ ε,

〈ξ, (z − Zt)−1ξ〉 = z−1 + t · z−1(σ(z−1) + a)z−1 +Oε(t
3/2),

so that the infinitesimal generator of the semigroup of the laws of Zt is precisely Gση,a, where
η = σ|A = Varµ1 . Thus, the law of Zt is νtη,ta. Intuitively, the law of Zt is obtained by
replacing m(Xχ(0,t)) by zero which amounts to replacing σ by ση.

Clearly, we have
‖Yt − Zt‖ = ‖m(Xχ(0,t))‖ = rad(σ).

And more generally, ‖Ys,t − Zs,t‖ ≤ rad(σ). Therefore, we have the the following result:

Theorem 7.4.1. For free, Boolean, monotone, and anti-monotone independence, the following
holds. Let µt be a convolution semigroup with infinitesimal generator Gσ,a. Let η = σ|A and let
νtη,ta be the semicircle/Bernoulli/arcsine law. Then there exists a non-commutative probability
space (B, E) and operators Yt and Zt in B such that

1. Yt is a process with independent and stationary increments with law µt.

2. Zt is a Brownian motion with drift with Zt ∼ νtη,ta.

3. Letting Ys,t = Yt − Ys and Zs,t = Zt − Zs, we have ‖Ys,t − Zs,t‖ ≤ rad(σ).

4. Given 0 = t0 < t1 < · · · < tN , the algebras A〈Ytj−1,tj , Ztj−1,tj 〉0 for j = 1, . . . , N are
independent.

Proof. We let H be the Fock space, B = B(H), and Yt and Zt be as above. Because Bξ = H,
we see that E = 〈ξ, ·ξ〉 gives a faithful representation, so that (B, E) is an A-valued prob-
ability space. We have already explained (1), (2), and (3), and claim (4) follows because
A〈Ytj−1,tj , Ztj−1,tj 〉0 is contained in ρtj−1,tj (B(Htj−1,tj )).

As a consequence, we have a version of the central limit theorem which describes the behavior
of µt as t→∞. Since µN is the N -fold convolution power of µ1, it follows from Theorem 6.5.5
(in the case a = 0) that if λN = dilN−1/2(µN ) and if f ∈ C3

nc(A, R) for R > (2+N−1/2) rad(µ1),
then

‖λN (f)− νη(f)‖ ≤ ‖f‖3,R,
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where ‖f‖3,R was a certain norm of ∆3f , described in Definition 6.5.1. The coupling we have
constructed here allows us to prove a similar estimate for all real t using the first derivatives
of f .

Corollary 7.4.2. For free, Boolean, or monotone independence, let µt be a convolution semi-
group with mean ta and variance tη, let λt = dilt−1/2(µt), and let νη,a be the semicircle/Bernoulli/arcsine
law. Suppose that t > 0 and R > 0 such that

R ≥ t−1/2 rad(σ) + 2
√
‖η(1)‖+ t1/2‖a‖

and that f ∈ C1
nc(A, R). Then∥∥λt(f)− νη,t1/2a(f)

∥∥ ≤ t−1/2 rad(σ)‖f‖1,R.

In particular,

sup
Im z≥ε

∥∥∥Gλt(z)−Gνη,t1/2a∥∥∥ ≤ rad(σ)

t1/2ε2
≤ C rad(µ1)

t1/2ε2
.

Proof. Let Yt and Zt be as above. Then t−1/2Yt has the law λt and t−1/2Zt has the law νη,t1/2a.

Note that ‖t−1/2Yt‖ and ‖t−1/2Zt‖ ≤ R. Thus, for f ∈ A〈X〉, we have∥∥λt(f)− νη,t1/2a(f)
∥∥ =

∥∥∥E[f(t−1/2Yt)− f(t−1/2Zt)]
∥∥∥

=
∥∥∥E[∆f(t−1/2Yt, t

−1/2Zt)[t
−1/2Yt − t−1/2Zt]

∥∥∥
≤ ‖f‖1,R‖t−1/2Yt − t−1/2Zt‖
≤ ‖f‖1,Rt−1/2 rad(σ).

This proves the first claim for f ∈ A〈X〉 and this inequality extends to the completion
C1
nc(A, R). The estimate on the Cauchy-Stieltjes transform follows easily as in Proposition

6.5.7.

7.5 Combinatorial Viewpoint on the Fock Space

In the last section, we defined operators Yt with laws µt, and gave an analytic argument that
the semigroup µt has Gσ,a as its infinitesimal generator. Now we will give an alternative

combinatorial proof by showing that tG̃σ,a is the cumulant generating function of µt. Although
this argument is redundant at this point, we include it in order to clarify the relationship
between the Hilbert-bimodule perspective and the combinatorial perspective on independence,
as well as to make the connection with §6.2.

The Free Case

Lemma 7.5.1. Consider the free Fock space on N = L2(R+,A〈X〉 ⊗σ A) constructed in §7.3.
Let

Tj = `(θj)
∗ + `(ζj) + m(fj) + aj ∈ B(H),

where θj, ζj ∈ N , fj ∈ L∞(R+,B), and aj ∈ A. Let Kn be the free cumulant with respect to
the expectation given by the vacuum vector ξ. Then

Kn(T1, . . . , Tn) =

{
aj , n = 1,

〈θ1, f2 . . . fn−1ζn〉N , n > 1



142 CHAPTER 7. CONVOLUTION SEMIGROUPS

Proof. Note that θj , ζj , fj , and aj are uniquely determined by Tj . For every n and every
T1, . . . , Tn as above, let Λn[T1, . . . , Tn] be the expression that we want to show is equal to
Kn[T1, . . . , Tn]. Note that the maps ` and m are A-A-bimodule maps and hence the operators
`(θ)∗+ `(ζ) +m(f) +a are an A-A-bimodule. Moreover, Λn is multilinear, and in fact A-quasi-
multilinear, in the Tj ’s. Thus, for a non-crossing partition π, we can define λπ, the composition
of the λn’s according to the partition π. Because the cumulants are uniquely determined by
the moment-cumulant formula, to prove our claim it suffices to show that

〈ξ, T1 . . . Tnξ〉 =
∑

π∈NC(n)

Λπ(T1, . . . , Tn).

To evaluate 〈ξ, T1 . . . Tnξ〉, we substitute Tj = `(θj)
∗ + `(ζj) + m(fj) + aj and expand by

multilinearity. The terms thus consist of strings of creation, annihilation and multiplication
operators. As in the proof of Proposition 6.2.1, we will enumerate some of these terms using
planar partitions and show that the other terms do not contribute to the expectation.

For each π ∈ NC(n), we define a string of creation, annihilation, and multiplication op-
erators as follows. For each singleton block {j} of π, we write aj in the jth position of the
string. For each block {j1, . . . , jk} with k > 1, we write `(θj1)∗ in the j1 position, `(ζjk) in the
jk position, and m(fji) in the ji position for 1 < i < k. This string is one of the terms in the
product.

We claim that all other terms in the product have zero expectation. Because the creation
operators map N⊗An into N⊗A(n+1) and the annihilation operators do the reverse and also
kill ξ, the creation and annihilation operators must be paired together in a planar way with
an `∗ on the left side and an ` on the right side of each pairing, or else the string will have
expectation zero, as in the proof of Proposition 6.2.1. Let π̃ be the planar partition in which
these pairs form blocks, and the other elements of [n] are singleton blocks.

Next, note that every multiplication operator m(fj) must be “inside” some creation-annihilation
pair; otherwise, the multiplication operator would be applied to a vector in Aξ which would
yield zero. We can form a partition π by joining each index j of a multiplication operator m(fj)
to the pair π̃ immediately outside it (that is, the greatest block V of π̃ such that {j} � V ).
Then each block of π consists of a creation-annihilation pair together with all the multiplication
operators which are immediately inside it or else is a single block corresponding to an element
aj . Thus, our string was produced by a partition π.

To complete the proof, one shows by induction on |π| that the expectation of the cor-
responding string is Λπ(T1, . . . , Tn). Indeed, every partition π must have an interval block
V = {j, . . . , k}. If V is a singleton block, then it corresponds to aj ∈ A and we can remove j
from π and multiply Tj+1 by aj on the left. If |V | > 1, then observe that

`(θj)
∗m(fj+1) . . .m(fk−1)`(ζk) = 〈θj , fj+1 . . . fk−1ζk〉 ∈ A,

and reduce to π \ V .

Lemma 7.5.2. For a measurable Ω ⊆ R+, let TΩ be set of operators of the form T = `(θ)∗ +
`(ζ) + m(f) + a, where θ, ζ, and f are supported in Ω. If Ω1, . . . , ΩN are disjoint and
measurable, then the unital A-algebras generated by TΩ1

, . . . , TΩN are freely independent.

Proof. By Lemma 7.5.1, the mixed cumulants between TΩ1
, . . . , TΩN vanish. Therefore, by

Remark 5.4.7, the algebras they generate are freely independent.
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Lemma 7.5.3. Let Ys,t = `((1⊗ 1)χ(s,t))
∗+ `((1⊗ 1)χ(s,t)) +m(Xχ(s,t)) + (t− s)a as in §7.3.

Then the free cumulants of Ys,t are given by

Cumn(Ys,t)[a1, . . . , an−1] =

{
(t− s)a, n = 1

(t− s)σ(a1Xa2 . . . Xan−1), n > 1.

Moreover, if 0 = t0 < · · · < tN , then the operators Ytj−1,tj are freely independent over A.

Proof. The first claim about the cumulants of Ys,t follows directly from Lemma 7.5.1. We see
that the operators Ytj−1,tj are freely independent by taking Ωj = (tj−1, tj) in Lemma 7.5.2.

The Boolean Case

Lemma 7.5.4. Consider the Boolean Fock space on N = L2(R+,A〈X〉 ⊗σ A) constructed in
§7.3. Let

Tj = `(θj)
∗ + `(ζj) + m(fj) + ajP ∈ B(H),

where θj, ζj ∈ N , fj ∈ L∞(R+,B), aj ∈ A, and P is the projection onto Aξ. Let Kn be the
Boolean cumulant with respect to the expectation given by the vacuum vector ξ. Then

Kn(T1, . . . , Tn) =

{
aj , n = 1,

〈θ1, f2 . . . fn−1ζn〉N , n > 1

Proof. Note that θj , ζj , fj , and aj are uniquely determined by Tj . For every n and every
T1, . . . , Tn as above, let Λn(T1, . . . , Tn) be the expression that we want to show is equal to
Kn(T1, . . . , Tn). Note that λn is A-quasi-multilinear. For an interval partition π, let Λπ be the
product of Λn’s according to π. To prove our claim it suffices to show that

〈ξ, T1 . . . Tnξ〉 =
∑

π∈I(n)

Λπ(T1, . . . , Tn).

To evaluate 〈ξ, T1 . . . Tnξ〉, we substitute Tj = `(θj)
∗ + `(ζj) + m(fj) + aj and expand by

multilinearity. The terms thus consist of strings of creation, annihilation and multiplication
operators. For each partition π ∈ I(n), we associate a string of creation, annihilation, and
multiplication operators exactly as in the free case. To wit, for each singleton block {j} of π,
we write aj in the jth position of the string. For each block {j, . . . , k} with k > j, we write
`(θj)

∗ in the j position, `(ζk) in the k position, and m(fi) in the i position for j < i < k. The
expectation of this string is precisely Λπ(T1, . . . , Tn).

Meanwhile, we claim that the other terms in the product have zero expectation. We have
`(ζ)∗[aξ] = 0 as well as `(ζ)m(f)`(θ) = 0 and Pm(f)`(ζ) = 0. This implies that a creation
operator must be applied before we can apply an annihilation operator, or else the string will
be zero. We must also apply an annihilation operator between any two creation operators and
vice versa. Thus, the creation and annihilation operators must alternate with the rightmost
being a creation operator and the leftmost being an annihilation operator. Let us group these
operators in creation-annihilation pairs (with the creation operator on the right of each pair
and no other creation or annihilation operator intervening).

Since Pm(f)`(ζ) = 0, there cannot be any occurrences of ajP between a creation-annihilation
pair, or else the string will have expectation zero. On the other hand, every multiplication oper-
ator m(fj) must occur between a creation-annihilation pair since otherwise it would be applied
to a vector in Aξ. Therefore, the only terms that contribute to the expectation are those that
arise from interval partitions.
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The next two lemmas follow immediately by the same argument as in the free case.

Lemma 7.5.5. For a measurable Ω ⊆ R+, let TΩ be set of operators of the form T = `(θ)∗ +
`(ζ) + m(f) + a, where θ, ζ, and f are supported in Ω. If Ω1, . . . , ΩN are disjoint and
measurable, then the unital A-algebras generated by TΩ1

, . . . , TΩN are Boolean independent.

Lemma 7.5.6. Let Ys,t = `((1⊗ 1)χ(s,t))
∗+ `((1⊗ 1)χ(s,t)) +m(Xχ(s,t)) + (t− s)a as in §7.3.

Then the Boolean cumulants of Ys,t are given by

Cumn(Ys,t)[a1, . . . , an−1] =

{
(t− s)a, n = 1

(t− s)σ(a1Xa2 . . . Xan−1), n > 1.

Moreover, if 0 = t0 < · · · < tN , then the operators Ytj−1,tj are Boolean independent over A.

The Monotone Case

Consider the monotone Fock space on N = L2(R+,A〈X〉 ⊗σ A) constructed in §7.3, and recall

that C = C([0,+∞],A) and N̂ is N equipped with the C-valued inner product 〈f, g〉(t) =∫∞
t
〈f(s), g(s)〉A〈X〉⊗A ds.
Although the monotone cumulants are not as well-behaved, there is still a good combina-

torial description for the moments of operators of the form

T = `(θ)∗ + `(ζ) + m(f) + φ(0)P + m(φ) ∈ B(H),

where θ, ζ ∈ N , f ∈ L∞(R+,B), and

φ(t) =

∫ ∞
t

ψ(s) ds

for some ψ ∈ L1(R+,A). Note that this includes the operators Ys,t representing our process
with independent and stationary increments.

In this case, the tuple (θ, ζ, f, ψ) is not uniquely determined by T because the possible
values for the terms m(f) and m(φ) overlap. For the sake of the computation for Ys,t, it will
be convenient to keep track of the tuple τ = (θ, ζ, f, ψ). If T is the space of such tuples, then
T is an A-A-bimodule with the action given by

a1τa2 = (a∗2θa
∗
1, a1ζa2, a1fa2, a2φa2),

and the map τ 7→ T is an A-A-bimodule map.
We define an A-quasi-multilinear form Γn : T n → L1(R+,A) by

Γn[τ1, . . . , τn](t) =

{
ψ1(t), n = 1

〈θ1(t), f2(t) . . . fn−1(t)ζn(t)〉A〈X〉⊗σA, n ≥ 2.

The right hand side is in L1(R+,A) in the first case because ψ1 ∈ L1(R+,A) and in the second
case because θ1 and f2 . . . fn−1ζn are in L2(Rπ+,A).

For π ∈ NC(n), define Γπ[τ1, . . . , τn] ∈ L1(Rπ+,A) by the recursive relation that if V =
{j + 1, . . . , k} is an interval block of π, then for t ∈ Rπ,

Γπ[τ1, . . . , τn](t) = Γπ\V [τ1, . . . , τj ,Γk−j [τj+1, . . . , τk](tV )τk+1, . . . , τn](t|π\V ),
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with the convention that if k = n, then Γn−j [τj+1, . . . , τn] is factored out on the right hand
side. This is well-defined for the same reason that Λπ is well-defined for any sequence of A-
quasi-multilinear forms. To prove that this is in L1(Rπ+,A), one evaluates Γπ when θj , ζj , fj ,
and ψj are simple functions of t and checks that the result is bounded in terms of the L2 norms
of θj and ζj , the L∞ norms of fj , and the L1 norms of ψj . We leave the details to the reader
since the computation is similar to the proof below, and at any rate, the claims about Ys,t only
use the equality for simple functions.

Lemma 7.5.7. With the setup and notation as above, we have

〈ξ, T1 . . . Tnξ〉 =
∑

π∈NC(n)

∫
{t∈Rπ+:t|=π}

Γπ[τ1, . . . , τn](t) dt.

Proof. We substitute Tj = `(θj)
∗+ `(ζj) +m(fj) + φj(0)P +m(φj) where φj(t) =

∫∞
t
ψj(s) ds.

Then we expand 〈ξ, T1 . . . Tnξ〉 by multilinearity, resulting in a sum of terms given by strings
of `(θj)

∗, `(ζj), m(fj), and φj(0)P + m(φj).
For each partition π, there is a corresponding term in the sum given as follows: For each

singleton block {j} of π, the jth letter of the string is φj(0)P + m(φj). If j is the lowest index
of a block V with |V | > 1, then the jth letter of the string is `(θj)

∗. If j is the highest index
of a block V with |V | > 1, then the jth letter of the string is `(ζj). Otherwise, the jth letter
is m(fj).

The strings in the expansion of 〈ξ, T1 . . . Tnξ〉 which do not correspond to a non-crossing
partition will not contribute to the expectation. The argument is the same as in the free
case. In brief, the structure of the Fock space guarantees that the creation and annihilation
operators must be paired in a planar way or else the expectation will be zero. Moreover, the
multiplication operators m(fj) must occur inside a creation-annihilation pair or else they will
multiply an element of Aξ and thus produce zero.

It remains to evaluate the expectation of each creation-annihilation-multiplication string
given by a non-crossing partition π. Similar to the proof of Proposition 6.2.6, this involves to
evaluating the integral over {t ∈ Rπ+ : t |= π} as an iterated integral. We proceed by induction
on |π|, including the base case within the general argument.

Suppose that π ∈ NC(n) and choose an interval block V = {j + 1, . . . , k} of π. Let

γ(t) = Γ|V |[τj+1, . . . , τk](t)

δ(t) =

∫ ∞
t

γ(s) ds

We claim the substring indexed by {j + 1, . . . , k} multiplies out to δ(0)P + m(δ). In the case
|V | = 1, this holds because

φk(0)P + m(φk) = δ(0)P + m(δ0).

On the other hand, if |V | > 1, then

`(θj+1)∗m(fj+2) . . .m(fk−1)`(ζk) = 〈θj+1, fj+2 . . . fk−1ζk〉N̂ (0)P + m(〈θj+1, fj+2 . . . fk−1ζk〉N̂ ).

If |π| = 1 (hence j = 0 and k = 0), this already completes the proof since the expectation of
the string evaluates to

δ(0) =

∫ ∞
0

Γπ[τ1, . . . , τn].

Otherwise, there are two cases.
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First, suppose that the block V is outer (that is, minimal with respect to ≺). Then the
operator δ(0)P +m(δ) ends up being applied to a vector in Aξ. Thus, we can replace it by the
constant δ(0) ∈ A without changing the expectation. Assuming that k < n, then applying the
induction hypothesis to τ1, . . . , τj , δ(0)τk+1, . . . τn, the expectation of the string evaluates to∫

{t|=π\V }
Γπ\V [τ1, . . . , τj , δ(0)τk+1, . . . , τn](t) dt

=

∫
{t|=π\V }

∫
s>0

Γπ\V [τ1, . . . , τj ,Γ|V |[τj+1, . . . , τk]τk+1, . . . , τn](t) ds dt

=

∫
{t|=π}

Γπ[τ1, . . . , τn](t) dt.

If k = n, one proceeds similarly by multiplying δ(0) on the right of τn instead of the left of
τk+1.

On the other hand, suppose that the block V is not outer. Then the operator δ(0)P +m(δ)
is applied to a vector in (Aξ)⊥. Thus, we can replace it by m(δ). Let τ = (0, 0, δ, 0) and let
π′ be the partition of [n− |V |+ 1] obtained by replacing the block V by a singleton, and then
joining this singleton block with the block W which is immediately outside of V in π to form
one block W ′. Then the expectation of the π string for τ1, . . . , τn is the same as the expectation
of the π′ string for τ1, . . . , τj , τ , τk+1, . . . , τn. Indeed, in the string for π′, the jth element is
the multiplication operator m(δ) from τ since this element is one of the elements in the middle
of the block W ′. So by the induction hypothesis, the expectation is∫

{t|=π′}
Γπ′ [τ1, . . . , τj , τ, τk+1, . . . , τn](t) dt

=

∫
{t|=π\V }

Γπ\V [τ1, . . . , τj , δ(tW )τk+1, . . . , τn](t) dt

=

∫
{t|=π\V }

∫
s>tW

Γπ\V [τ1, . . . , τj ,Γk−j [τj+1, . . . , τk](s)τk+1, . . . , τn](t) ds dt

=

∫
{t|=π}

Γπ[τ1, . . . , τn](t) dt,

which completes the proof.

Lemma 7.5.8. Fix s < t and let Ts,t be the collection of operators of the form

T = `(θ · χ(s,t))
∗ + `(ζ · χ(s,t)) + m(f · χs,t) + aQs,t

where θ, ζ ∈ A〈X〉⊗σA, f ∈ B, a ∈ A, and Qs,t is given as in Proposition 7.3.10. Let T1, . . . ,
Tn be operators in Ts,t given by θj, ζj, fj, and aj. Then their monotone cumulants are given
by

Kn[T1, . . . , Tn] =

{
(t− s)a1, n = 1

(t− s)〈θ1, f2 . . . fn−1ζ〉A〈X〉⊗σA, n > 1.

Proof. Since s and t are fixed, the tuple (θj , ζj , fj , aj) is uniquely determined by Tj in this case.
Thus, we may safely define Λn[T1, . . . , Tn] to be the right hand side of the identity we want
to prove. Note that if φs,t(x) =

∫∞
x
χ(s,t)(y) dy, then Qs,t = φs,t(0)P + m(φs,t). Applying the
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previous lemma to the tuples τj = (θjχ(s,t), ζjχ(s,t), fjχ(s,t), χ(s,t)), we have

〈ξ, T1 . . . Tnξ〉 =
∑

π∈NC(n)

∫
{u∈Rπ+:u|=π}

Γπ[τ1, . . . , τn](u) du

=
∑

π∈NC(n)

γπΛπ[T1, . . . , Tn],

where γπ = |{u ∈ [0, 1]π : u |= π}|, because Γπ[τ1, . . . , τn] is (t− s)−|π|Λπ[T1, . . . , Tn] times the
indicator function of {u ∈ (s, t)π : u |= π}. From the moment-cumulant relations, it follows
that Kn[T1, . . . , Tn] = Λn[T1, . . . , Tn].

Lemma 7.5.9. Let 0 = t0 < t1 < · · · < tN . The non-unital A-algebras generated by Ttj−1,tj

are monotone independent.

Proof. Consider a string of operators T1, . . . , Tn where Tk ∈ Ttjk−1,tjk
is given by the tuple

τk = (θkχtjk−1,tjk
, ζkχtjk−1,tjk

, fkχtjk−1,tjk
, χtjk−1,tjk

).

We will argue that the expectation of T1 . . . Tk agrees with the expectation of the corresponding
string in the monotone product of the algebras, which is given by Lemma 5.4.17. Let Vj be
the set of indices k such that jk = j and let σ be the (not necessarily non-crossing) partition
{V1, . . . , VN}. By applying Lemmas 7.5.7 to τ1, . . . , τn, we obtain

〈ξ, T1 . . . Tkξ〉 =
∑

π∈NC(n)

∫
{t∈Rπ+:t|=π}

Γπ[τ1, . . . , τn](t) dt.

Now Γπ[τ1, . . . , τn](t) is supported on the set of t values where for each index k in a block W ,
the coordinate tW is in (tjk−1, tjk). In particular, Γπ vanishes unless each block W is contained
in a single Vj , or in other words π ≤ σ. Thus, π|Vj is defined for each j. Now if W is a block
of π|Vj , then by 7.5.8

Γ|W |[τk : k ∈W ](tW ) = χ(tj−1,tj)(tW )(tj − tj−1)−1K|W |[τk : k ∈W ].

Thus, by the inductive construction of Γπ and Kπ, we have

Γπ[τ1, . . . , τn](t) = χ
t|Vj∈(tj−tj−1)

π|Vj ∀j
(t)

N∏
j=1

(tj − tj−1)−|π|Vj |Kπ[T1, . . . , Tn].

So overall

〈ξ, T1 . . . Tkξ〉 =
∑

π∈NC(n)

|{t ∈ (t0, t1)π|V1 × (tN−1, tN )π|VN : t |= π}|
N∏
j=1

(tj − tj−1)−|π|Vj |Kπ[T1, . . . , Tn]

=
∑

π∈NC(n)

|{t ∈ (0, 1)π|V1 × (N − 1, N)π|VN : t |= π}| ·Kπ[T1, . . . , Tn].

By Lemma 5.4.17, this agrees with the expectation that this string would have in the situation
of monotone independence. Therefore, the algebras must be monotone independent.

The last two lemmas immediately show what we want to prove about Ys,t.
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Corollary 7.5.10. The operators Ys,t satisify

Cumn(Ys,t)[a1, . . . , an−1] =

{
(t− s)a, n = 1

(t− s)σ(a1Xa2 . . . Xan−1), n > 1.

Moreover, Yt0,t1 , . . . , YtN−1,tN are monotone independent for 0 = t0 < t1 < · · · < tN .

7.6 Infinitely Divisible Laws and the Bercovici-Pata Correspondence

In Theorem 7.1.2, we have given a description of convolution semigroups in terms of their
infinitesimal generators. Now we turn to the question of which laws µ are included in a convo-
lution semigroup (µt)t>0.

Definition 7.6.1. An A-valued law µ is said to be

• freely infinitely divisible if for infinitely many n there exists µ1/n such that µ = µ�n
1/n;

• Boolean infinitely divisible if for infinitely many n there exists µ1/n such that µ = µ]n1/n;

• monotone infinitely divisible if for infinitely many n there exists µ1/n such that µ =
µ�n

1/n = µ�n
1/n.

Theorem 7.6.2. Every law is Boolean infinitely divisible. Moreover, for each type of indepen-
dence, for an A-valued law µ, the following are equivalent:

1. µ is infinitely divisible.

2. The cumulant generating function Kµ is given by G̃σ,a for some generalized law σ and
self-adjoint a ∈ A.

3. There exists a convolution semigroup µt with µ = µ1.

Proof. The implication (2) =⇒ (3) was already established in Theorem 7.1.2, while the
implication (3) =⇒ (1) is immediate.

In the free case, we show that (1) =⇒ (2) just as in Proposition 7.2.1. Let nk → +∞
be a sequence of indices such that µ = µ⊕nk1/nk

. Since Φµ = nkΦµ1/nk
is analytic on Im z ≥

2n
−1/2
k ‖Varµ(1)‖1/2, we see that Φµ extends to be analytic on the upper half-plane and hence

equals Gσ,a for some σ and a. Thus, the three statements are equivalent in the free case.
In the Boolean case, we have already seen that Bµ = Gσ,a for some σ and a, and thus (2)

automatically holds. Hence, (3) and (1) also always hold in the Boolean case by the preceding
argument.

It remains to show that (1) =⇒ (2) in the monotone case. Let nk → +∞ and µ = µ�nk
1/nk

.

Now nkBµ1/nk
= Gσk,a(z) for some generalized law σk and the constant a = µ(X). Moreover,

σk(1) = Varµ(1) and rad(σk) is bounded by rad(σ0), where Bµ = Gσ0,a by the same argument
as in Lemma 7.2.6. Let λk,t be the monotone convolution semigroup generated by Gσk,a. As
in the proof of Proposition 7.3.10, we have for Im z ≥ ε that

Fλk,1/nk (z) = z − n−1
k Gσk,a(z) +Oε(n

−3/2
k ),

= Fλk,1/nk (z) +Oε(n
−3/2
k ),
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where the error estimate Oε is independent of k since rad(σk) and ‖σk(1)‖ are uniformly
bounded. Now by a telescoping series argument (as in Theorem 6.4.4), we have

∥∥Fµ − Fλk,1∥∥ =

nk∑
j=1

∥∥∥∥(Fµ�(j−1)

1/nk

◦ Fµ1/nk
− Fµ�j

1/nk

◦ Fλk,1/nk

)
◦ F

λ
�(nk−j)
k,1/nk

∥∥∥∥
≤ nk ·Oε(n−3/2

k ) = Oε(n
−1/2
k ).

Thus, Fλk,1 → Fµ. By Theorem 7.1.2 (4), we have rad(λk,1) ≤ rad(σ0)+
√
‖σ0(1)‖+‖a‖, which

is uniformly bounded, and therefore λk,1 converges in moments to µ by Proposition 3.6.6. This
implies that the monotone cumulants of λk,1 converge and hence Gσk,a converges to a function

Gσ,a. Then G̃σ,a is the monotone cumulant generating function of µ and thus (2) holds.

We have shown that infinitely divisible laws for each type of independence are in bijection
with pairs (σ, a) where σ is a generalized law and a is a self-adjoint constant. In particular,
this means that infinitely divisible laws for free, Boolean, and monotone independence are in
bijection with each other. For instance, given a freely infinitely divisible law µfree, there exist
Boolean and monotone infinitely divisible laws µBoolean and µmonotone such that

Kfree
µfree

= KBoolean
µBoolean

= Kmonotone
µmonotone

,

and the same holds if we start with a Boolean or monotone infinitely divisible law. The
map µfree → µBoolean will be called the free-to-Boolean Bercovici-Pata bijection, and we use
similar terminology for each combination of two types of independence. We refer to these maps
collectively as the Bercovici-Pata correspondence.

For infinitely divisible laws, arbitrary positive real convolution powers are defined, and
moreover the Bercovici-Pata bijections preserves such convolution powers.

Definition 7.6.3. For each type of independence, if µ is a infinitely divisible law and t > 0,
then the law with cumulant generating function tKµ will be called the t-th convolution power
of µ and will be denoted by µ�t in the free case, µ]t in the Boolean case, and µ�t = µ�t in
the monotone case.

Observation 7.6.4. If µfree, µBoolean, and µmonotone are related by the Bercovici-Pata corre-
spondence, then so are µ�t

free, µ]tBoolean, and µ�t
monotone for each t > 0.

The space of infinitely divisible laws and the Bercovici-Pata correspondence have the fol-
lowing topological properties with respect to convergence in moments.

Proposition 7.6.5. Consider the space ΣM of A-valued laws with rad(µ) ≤M with the topology
of convergence in moments. For each type of independence, the infinitely divisible laws are a
closed (hence complete) subspace. Moreover, convergence in moments for the infinitely divisible
laws is equivalent to uniform local convergence of the cumulant generating functions K̃µ on the
upper half-plane, and the set of cumulant generating functions for infinitely divisible µ ∈ ΣM
is complete.

Proof. Suppose that µn is a sequence of infinitely divisible laws that converges in moments to a
law µ. Let K̃µn = Gσn,an . Then rad(σn) ≤ rad(µn) ≤ R. The cumulants of µn converge, which
means that σn is Cauchy in moments, hence converges to a generalized law σ by Proposition
3.6.5. Also, an → a := µ(X). Thus, K̃µ = Gσ,a, so µ is infinitely divisible. Thus, the infinitely
divisible laws are a closed subspace.
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The remaining claims follow from Proposition 3.6.5. Indeed, convergence in moments for
infinitely divisible laws µn is equivalent to convergence in moments of σn and convergence of
an, which is equivalent to uniform local convergence of Gσn,an on H+(A). The same holds for
Cauchyness of sequences, and we already know that ΣM is complete, hence so is the space of
infinitely divisible laws.

Observation 7.6.6. Each of the Bercovici-Pata bijections maps ΣM continuously into ΣCM
for some constant C.

Proof. The proof for each of the bijections is the same, but for concreteness of notation, consider
the free-to-Boolean bijection. Let µfree and µBoolean have the cumulant generating function G̃σ,a.
Note that

rad(µBoolean) ≤ rad(σ) + 2
√
‖σ(1)‖+ ‖a‖

≤ C rad(µfree) + 2
√
µfree(X2) + ‖µfree(X)‖

≤ C ′ rad(µfree).

Moreover, convergence in moments for µfree is equivalent to convergence of σ and a, which is
equivalent to convergence of µBoolean.

The following theorem, stated in the spirit of the original paper [BP99, Theorem 1.2], shows
how the Bercovici-Pata correspondence arises purely from the convolution operations.

Theorem 7.6.7. Let λk be a sequence of A-valued laws and nk →∞. Then the following are
equivalent:

1. rad(λ�nkk ) is bounded and λ�nkk converges to a law λfree as k →∞.

2. rad(λ]nkk ) is bounded and λ]nkk converges to a law λBoolean as k →∞.

3. rad(λ�nk
k ) is bounded and λ�nk

k converges to a law λmonotone as k →∞.

Moreover, in this case, the laws λfree, λBoolean, and λmonotone are infinitely divisible (for their
respective types of independence) and are related by the Bercovici-Pata correspondence.

Proof. We will organize the proof into (1) =⇒ (2), (2) =⇒ (1), (3) =⇒ (2), (2) =⇒ (3),
and prove the claims about infinite divisibility and the Bercovici-Pata correspondence along
the way.

(1) =⇒ (2). Suppose (1) holds. Let µk = λ�nkk and assume rad(µk) ≤M . Using Theorem
4.7.2, Rµk is defined in a neighborhood of 0 and bounded, with estimates that only depend on

M . Hence, so is Rλk = (1/nk)Rµk . Since G̃λk is the inverse function of (z−1 +Rλk(z))−1, using
the inverse function theorem (Theorem 2.8.1) and Theorem 3.4.1, we see that rad(λk) ≤ M ′

where M ′ only depends on M .

Let Φλk = R̃λk be the Voiculescu transform. We aim to show that Φλk = Bλk + O(n
−3/2
k )

on an appropriate domain. Let σk and ak be given by nkBλk = Gσk,ak , so that Fλk(z) =
z − n−1

k Gσk,ak . Note that rad(σk) ≤ 2 rad(λk) ≤ 2M ′. Let Ψλk(w) = F−1
λk

(w) = w + Φλk(w).

We showed in the proof of Theorem 4.7.2 that if δ > 2
√
n−1
k ‖σk(1)‖, then Ψk defines a map

H+,2δ(A)→ H+,δ(A). Now we have

(id−n−1
k Gσk,ak) ◦Ψk = id



7.6. INFINITELY DIVISIBLE LAWS AND THE BERCOVICI-PATA CORRESPONDENCE151

hence for Imw ≥ 2δ,

‖Ψλk(w)− w‖ = ‖n−1
k Gσk,ak(Ψλk(w))‖ ≤ ‖σk(1)‖

nkδ
.

Hence, ∥∥Φλk(w)− n−1
k Gσk,ak(w)

∥∥ =
∥∥Ψλk(w)− w − n−1

k Gσk,ak(w)
∥∥

=
∥∥n−1

k Gσk,ak(Ψλk(w))− n−1
k Gσk,ak(w)

∥∥
≤ ‖σk(1)‖
nk · 2δ · δ

‖Ψλk(w)− w‖

≤ ‖σk(1)‖2

2n2
kδ

3
.

Now we note that ‖σk(1)‖ ≤ rad(µk)2 ≤M2. Thus,

Φµk(z) = nkΦλk(z) = Gσk,ak(z) +Oδ,M (n−1
k ),

provided that n
1/2
k > 2M/δ ≥ 2‖σk(1)‖1/2.

We assumed that µk → λfree and hence Rµk converges to Rλfree
in a neighborhood of 0,

hence Φµk → Φλfree
for Im z sufficiently large, by analytic continuation. Since rad(σk) ≤ M ′

and ‖ak‖ ≤M , we know that Gσk,ak converges as k →∞ to a function Gσ,a. Then Gσ,a = Φλfree

and hence λfree is freely infinitely divisible.
Furthermore, we have Gσk,ak = nkBλk = Bλ]nkk

. Now

rad(λ]nkk ) ≤ rad(σk) + 2
√
‖σk(1)‖+ ‖ak‖ ≤ 4M ′.

Thus, rad(λ]nkk ) is bounded as desired. Also, Bλ]nkk
converges and hence λ]nkk converges in

moments to some law λBoolean. Now

BλBoolean
= Gσ,a = Φλfree

,

and hence λBoolean and λfree are related by the Bercovici-Pata correspondence.
(2) =⇒ (1). As before, we will write nkBλk = Gσk,ak . First, we must check that rad(λ�nkk )

is bounded. Assume that rad(λ�nkk ) ≤M . Then rad(σk) ≤ 2M and ‖ak‖ ≤M . Hence, rad(λk)

is bounded by a constant M ′. By Theorem 4.7.2, Rλk is analytic on B(0, (3 − 2
√

2)/M ′) and
is bounded by

‖R
λ
�nk
k

‖ = nk‖Rλk‖ ≤
2‖σk(1)‖M ′√

2− 1
+ ‖ak‖ =: M ′,

By the inverse function theorem, this yields a uniform bound M ′′ on rad(λ�nkk ) as k →∞.
Similar to the proof of (1) =⇒ (2), we have

Φ
λ
�nk
k

(z) = nkΦλk(z) = Gσk,ak(z) +Oδ,M (n−1
k ).

By our assumption that λ]nkk converges, Gσk,ak converges to some function Gσ,a. Thus, Φ
λ
�nk
k

converges, which implies that λ�nkk converges in moments to some law λfree. As before, λfree

and λBoolean are related by the Bercovici-Pata correspondence since their cumulant generating
function is G̃σ,a.
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(3) =⇒ (2). Define (σk, ak) by nkBλk = Gσk,ak and assume that rad(λ�nk
k ) ≤M . Proceed-

ing as in the proof of Theorem 7.6.2 for the monotone case, we have rad(σk) ≤ 2 rad(λ�nk
k ) ≤

2M , while σk(1) = Varλ�nk
k

(1) and ak = λ�nk
k (X) are bounded. Since Bλ]nkk

= Gσk,ak , we see

that rad(λ]nkk ) is uniformly bounded.
Let λ′k be the law with monotone cumulant generating function given by n−1

k Gσk,ak . Note
that rad((λ′k)�nk) is uniformly bounded by Observation 7.6.6. Then for Im z ≥ ε, we have

Fλ′k(z) = z − n−1
k Gσk,ak(z) +Oε,M (n

−3/2
k ) = Fλk(z) +Oε,M (n

−3/2
k ).

By the telescoping series argument, we have∥∥∥F(λ′k)�nk (z)− Fλ�nk
k

(z)
∥∥∥ = Oε,M (n

−1/2
k ).

By assumption, λ�nk
k converges to some λmonotone and hence also (λ′k)�nk converges in moments

to λmonotone. The monotone cumulant generating function of (λ′k)�nk is G̃σk,ak , and thus Gσk,ak
converges to some function Gσ,a. Then G̃σ,a is the monotone cumulant generating function for
λmonotone and hence λmonotone is monotone infinitely divisible.

But we also know that Gσk,ak is the Boolean cumulant generating function of λ]nkk , and
hence λ]nkk converges to some law λBoolean with Boolean cumulant generating function Gσ,a,
which is related to λmonotone by the Bercovici-Pata correspondence.

(2) =⇒ (3). Define (σk, ak) by nkBλk = Gσk,ak and assume that rad(λ]nkk ) ≤ M (and
hence rad(σk) ≤ 2M). Now we show that rad(λ�nk

k ) is uniformly bounded. Recall that

G̃λk(z) = (z−1 − n−1
k G̃σk,ak(z))−1 = z(1− n−1

k G̃σk,ak(z)z)−1.

Because σk and ak are bounded uniformly with estimates depending only on M , there exists R
depending on M such that

‖z‖ ≤ R =⇒
∥∥∥G̃σk,ak(z)z

∥∥∥ ≤ 1.

For such z, we have
‖G̃λk(z)‖ ≤ ‖z‖(1− n−1

k )−1.

This implies that G̃λk(z) maps B(0, (1 − n−1
k )r) into B(0, r) for r ≤ R. In particular, the

nk-fold composition of G̃λk maps B(0, (1−n−1
k )nkR) into B(0, R). Since monotone convolution

corresponds to composition of the transforms G̃, we see that G̃λ�nk
k

is fully matricial on B(0, (1−
n−1
k )nkR), so that

rad(λ�nk
k ) ≤ (1− n−1

k )−nkR−1.

As k →∞, this converges to e/R and hence it is bounded as k →∞.
Let λ′k be the law with monotone cumulant generating function n−1

k Gσk,ak . We assumed
that λ]nkk converges to λBoolean, hence Gσk,ak converges to a function Gσ,a. This means that
the monotone cumulants of (λ′k)�nk converge, so that (λ′k)�nk converges to a law λmonotone.
But we also have rad((λ′k)�nk) uniformly bounded and∥∥∥F(λ′k)�nk (z)− Fλ�nk

k
(z)
∥∥∥ = Oε,M (n

−1/2
k )

as in the proof of (3) =⇒ (2). So λ�nk
k also converges to λmonotone. Then λmonotone has

the monotone cumulant generating function G̃σ,a = B̃λBoolean
, and hence λmonotone is infinitely

divisible and related to λBoolean by the Bercovici-Pata correspondence.
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Remark 7.6.8. The semicircle, Bernoulli, and arcsine laws of variance η are related under the
Bercovici-Pata correspondence because the cumulant generating function in each case is η(z).
This is also must be the case in light of the central limit theorem and Theorem 7.6.7. Indeed, if
λ is any law of variance η and nk = k and λk = dilk−1/2(λ), then by the central limit theorem
λ�kk , λ]kk , and λ�k

k converge to the semicircle, Bernoulli, and arcsine laws respectively. Thus,
by Theorem 7.6.7, the semicircle, Bernoulli, and arcsine laws must be infinitely divisible and
related by the Bercovici-Pata correspondence.
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and additive free convolution”. In: 153 (1992), pp. 217–248. doi: 10.2140/pjm.
1992.153.217.

[Dyk07] Kenneth J. Dykema. “Multilinear function series and transforms in free probability
theory”. In: Advances in Mathematics 208 (1 2007), pp. 351–407. doi: 10.1016/j.
aim.2006.02.011.
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