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ALGEBRAIC PROPERTIES OF GENERALIZED GRAPH
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Abstract. We propose an algebraic framework for generalized graph Laplacians which unifies
the study of resistor networks, the critical group, and the eigenvalues of the Laplacian and adjacency
matrices. Given a graph with boundary G together with a generalized Laplacian L with entries in a
commutative ring R, we define a generalized critical group ΥR(G,L). We relate ΥR(G,L) to spaces
of harmonic functions on the network using the Hom, Tor, and Ext functors of homological algebra.
We study how these algebraic objects transform under combinatorial operations on the network
(G,L), including harmonic morphisms, layer-stripping, duality, and symmetry. In particular, we
use layer-stripping operations from the theory of resistor networks to systematize discrete harmonic
continuation. This leads to an algebraic characterization of the graphs with boundary that can be
completely layer-stripped, an algorithm for simplifying computation of ΥR(G,L), and upper bounds
for the number of invariant factors in the critical group and the multiplicity of Laplacian eigenvalues
in terms of geometric quantities.
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1. Introduction. Motivated by questions from resistor networks as well as alge-
braic graph theory, we study algebraic properties of a generalized critical group. We
relate spaces of harmonic functions to the generalized critical group using homological
algebra. We study how these algebraic objects transform under modifications of the
network, including harmonic morphisms, layer-stripping, duality, and symmetry.

1.1. Layer-stripping for resistor networks. Our first motivation comes from
the theory of resistor networks developed by [15, 18, 13, 29, 27, 26]. A graph with
boundary or ∂-graph is a graph (V,E) together with a specified partition of V into a
set ∂V of boundary vertices and a set V ◦ of interior vertices. The boundary vertices
are the vertices where we will allow a net flow of current into or out of the network. A
resistor network is an edge-weighted ∂-graph, where each weight or conductance w(e)
is strictly positive. An electrical potential is a function u : V → R. The net current at
a vertex x is given by the weighted Laplacian

Lu(x) =
∑
y∼x

w(x, y)[u(x)− u(y)].
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A potential function is harmonic if the net current vanishes at each interior vertex.
The discrete electrical inverse problem studied by [15, 13, 27, 29, 26] asks whether

the conductances of a network can be recovered by performing boundary measure-
ments of harmonic functions. We measure how the potentials u|∂V and net currents
Lu|∂V relate for a harmonic function u, and we encode this information in a re-
sponse matrix Λ (for precise definition, see [18, section 3.2]). The inverse problem
asks whether we can uniquely determine w knowing only G and Λ. In other words,
for fixed G, we want to reverse the transformation w 7→ Λ.

The electrical inverse problem cannot be solved for all graphs, but many graphs
can be recovered via layer-stripping, a technique in which the edge weights are recov-
ered iteratively, working inward from the boundary. At each step, one recovers the
conductance of a near-boundary edge, then removes that edge by a layer-stripping
operation of deletion or contraction, and thus reduces the problem to a smaller graph
[18, section 6.5].

Layer-stripping operations have intrinsic algebraic and combinatorial interest as
well. For instance, if a ∂-graph can be completely layer-stripped to nothing, then one
can construct its response matrix iteratively through simple transformations corre-
sponding to the layer-stripping operations [18, section 6]. This process parametrizes
the response matrices associated for resistor networks which are circular planar (i.e.,
able to be embedded in the disk). Furthermore, as observed by [30], the action of
layer-stripping operations on these response matrices generates a group isomorphic
to the symplectic group. In [1], circular planar networks (up to Y -∆ equivalence) are
given the structure of a poset with G′ ≥ G if G′ can be layer-stripped down to G.

Let us call a ∂-graph layerable if it can be completely layer-stripped to the empty
graph. In this paper, we will construct an algebraic invariant to test layerability. Our
strategy is to replace edge weights in R+ with edge weights in an arbitrary commu-
tative ring R. Then we consider the weighted Laplacian as an operator on functions
u : V → M , where M is a given R-module. We examine algebraic properties of the
module U(G,L,M) of harmonic functions and the module U0(G,L,M) of harmonic
functions such that u and Lu both vanish on the boundary of G.

We show that if a ∂-graph is layerable and we assign edge weights which are
units in a ring R, then U0(G,L,M) = 0. That is, if u is harmonic with u|∂V = 0
and Lu|∂V = 0, then u is identically zero. The idea is to start with the values on
the boundary and work one’s way inward following the sequence of layer-stripping
operations. At each step, we deduce that another edge has zero current or that
another vertex has zero potential. In essence, this is a discrete version of harmonic
continuation.

The condition that U0(G,L,M) = 0 for all L and M does not quite characterize
layerable ∂-graphs. If we have a ∂-graph G and U0(G,L,M) = 0 for every Laplacian
L obtained by assigning unit edge weights in any ring R, then G may not be layerable.
However, it must be completely reducible, that is, it can be reduced to nothing using
layer-stripping and another operation which splits apart two subgraphs that are glued
together at a common boundary vertex (see Theorem 7.13).

Moreover, we can characterize layerability algebraically by generalizing L to allow
arbitrary diagonal entries. As shown in Theorem 5.16, G is layerable if and only if
U0(G,L,M) = 0 for every generalized Laplacian L of the form D − A, where D is a
diagonal matrix and A is the adjacency matrix weighted by units in R.

Remark 1.1. It is important to point out that our invariants do not test whether
the inverse problem can be solved. Solving the inverse problem would require not
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only deleting and contracting a sequence of edges, but also being able to determine
the weight of each edge from the boundary behavior of the network. For a treatment
of the inverse problem through layer-stripping, see [27, 26].

Remark 1.2. It is straightforward to test whether a specific ∂-graph is layerable
by repeatedly iterating over the boundary vertices searching for edges that can be
removed, and this can be done in polynomial time. The advantage of an algebraic
invariant is that it can be used to test layerability for whole classes of networks by
relating it to other more global properties (see, e.g., Proposition 7.14). It also gives
us significant information about nonlayerable graphs with boundary.

1.2. Harmonic functions and the critical group. The modules U(G,L,M)
and U0(G,L,M) of harmonic functions turn out to be related to another R-module,
which we call the fundamental module Υ. The module Υ is a generalization of the
critical group of a graph (also known as the sandpile group, Jacobian, or Picard
group), which has received significant attention from physicists, combinatorialists,
probabilists, algebraic geometers, and number theorists.

The critical group can be produced through several different combinatorial mod-
els. The abelian sandpile model was introduced in statistical physics by Dhar [19],
who was motivated by the study of self-organized criticality. Grains of sand are placed
on the vertices of a graph. If a vertex has at least as many grains of sand as its degree,
the vertex is allowed to topple by sending one grain of sand to each of its neighbors.
The elements of the sandpile group are the critical configurations of sand [23, sec-
tion 14], [9]. There are other combinatorial models which produce the same group.
Extending work of [40] on the balancing game, [10] introduced the chip-firing game
and uncovered its connection to greedoids. The dollar game appeared in [8] and was
analyzed extensively using the methods of algebraic potential theory.

Sandpile theory has since expanded into other areas of combinatorics, graph the-
ory, and even algebraic geometry. Graph theorists study the sandpile group in the
guise of the quotient of the chain group by the submodule generated by cycles and
bonds [8, sections 26–29]. Probabilists study the abelian sandpile model due to its
intimate connections with generating uniformly random spanning trees [24, 32]; the
sandpile group acts freely and transitively on the set of spanning trees of the graph
[24, section 7], [9, Theorem 7.3]. Viewing sand configurations as divisors on the graph,
[33, 5] interpreted the sandpile group as the Jacobian variety of a degenerate curve
and proved a Riemann–Roch theorem for graphs.

For such a fruitful object with deep and diverse connections, the critical group
has a surprisingly simple algebraic characterization. For a connected graph G, if ZV
is the group of 0-chains on the vertices and L : ZV → ZV is the graph Laplacian,
then coker(L) ∼= Crit(G) ⊕ Z (see [9, Theorem 4.2]). This construction of Crit(G)
easily generalizes to ∂-graphs with edge weights in an arbitrary ring. In the general
case, we define Υ(G,L) as the cokernel of the generalized Laplacian L viewed as a
map from 0-chains on the interior vertices to 0-chains on V (in a similar manner to
[4, 21]).

We relate Υ with harmonic functions by observing that

U(G,L,M) = Hom(Υ(G,L),M);

in other words, Υ(G,L) is the representing object for the functor U(G,L,−) on R-
modules. We also show that U0(G,L,M) = Tor1(Υ(G,L),M) (for nondegenerate
networks). In other words, M -valued harmonic functions that are not detectable
from boundary measurements indicate torsion of the fundamental module Υ. These
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algebraic facts lead to several equivalent algebraic characterizations of layerability and
complete reducibility in terms of Υ (Theorems 5.16 and 7.13).

As a special case of our theory, for a graph without boundary with edge weights
1, we have Υ ∼= Crit(G)⊕ Z. Moreover,

U(G,L,R/Z) ∼= HomZ(Crit(G),R/Z)× R/Z ∼= Crit(G)× R/Z,

where the isomorphism HomZ(Crit(G),R/Z) ∼= Crit(G) follows from Pontryagin du-
ality because Crit(G) is a finite abelian group. Thus, we recover the observation of
[39, section 2] and [24, p. 11] that Crit(G) is isomorphic to the group of R/Z-valued
harmonic functions modulo constants.

This harmonic-function perspective makes the computation of Υ (and hence
Crit(G)) accessible to the powerful technique of discrete harmonic continuation, which
has proved extremely useful to the resistor network community—for instance, see [18,
sections 4.1–4.5], [17, section 4], [27], [28, section 2.3]. We illustrate this technique in
section 3, using it to compute Υ for a family of ∂-graphs embedded on the cylinder.

In section 5 we present a systematic approach which uses layer-stripping as a
geometric model for harmonic continuation. As an application, we have the following
result (a special case of Theorem 5.23): SupposeG is a graph without boundary andG′

is obtained from G by assigning s vertices to be boundary vertices. If G′ is layerable,
then Crit(G) has at most s− 1 invariant factors. In fact, these invariant factors can
be found from the Smith normal form of an s × s matrix computed explicitly from
the sequence of layer-stripping operations.

1.3. Discrete differential geometry and complex analysis. The general-
ized critical group Υ serves as a link between the combinatorial properties of a ∂-graph
and the algebraic properties of harmonic functions, not unlike the way that homology
links the topology of a Riemannian manifold to harmonic differential forms. In light
of Hodge theory, harmonic differential forms on a manifold represent elements of the
de Rham cohomology groups. On the other hand, these groups are characterized as
HomZ(Hn,R) by the de Rham theorem, where Hn is the homology of a chain complex
defined using formal linear combinations of simplices. In a similar way, the module
U(G,L,M) of harmonic functions on an R-network can be represented as Hom(Υ,M),
where Υ is obtained by considering formal linear combinations of vertices.

In fact, the analogy between Riemannian geometry and weighted graphs can be
made quite precise. We shall sketch the connection here in a similar way to [4, section
2.1] and [36]. We remark also that [21] has generalized the critical group to higher
dimensions using an analogue of the Hodge Laplacian.

Given a ∂-graph G and a commutative ring R, we define chain groups

C0 := RV, C1 := RE/{−e = ē}e∈E ,

that is, the free R-modules on the vertex and edge sets, respectively, after identifying
the negative of an oriented edge with its reverse orientation. Dual to chains, we have
modules Ωj(G,L,M) consisting of M -valued j-forms:

Ωj(G,L,M) := Hom(Cj ,M), j = 0, 1.

The boundary map ∂ : C1 → C0 given by ∂e = e+ − e− induces the discrete gradient
d : Ω0 → Ω1 given by df(e) = f(e+) − f(e−). The coboundary map ∂∗ : C0 →
C1 given by x 7→

∑
e:e+=x e induces the discrete divergence d∗ : Ω1 → Ω0 given by

d∗ω(x) =
∑
e:e+=x ω(e). The weighted chain Laplacian ∂w∂∗ : C0 → C0 induces the
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weighted Laplacian on cochains or functions d∗wd : Ω0 → Ω0. (Here w denotes the
map e 7→ w(e)e.)

For a graph without boundary, the module U(G,L,M) arises from (weighted)
cohomology theory as the kernel of d∗wd : Ω0 → Ω0. On the other hand, Υ(G,L)
arises from (weighted) homology theory as the cokernel of ∂w∂∗ : C0 → C0. In this
discrete setting, the de Rham–like duality U(G,L,M) ∼= HomR(Υ(G,L),M) follows
immediately from properties of quotient modules (see Lemma 2.9).

There is an even better developed analogy between graphs and Riemann surfaces
[6, 42, 36, 37, 11], and we will continue to draw inspiration from complex analysis
and topology even as we build a purely combinatorial and algebraic theory. We
shall describe analogues of holomorphic maps (section 4.2), harmonic continuation
(section 5), and harmonic conjugates (section 8).

1.4. Overview. The paper is organized as follows:
Section 2, on the fundamental module Υ(G,L), defines the generalized critical

group Υ(G,L) and interprets Hom(Υ(G,L),−) and Tor1(Υ(G,L),−) in terms of har-
monic functions (Lemma 2.9 and Proposition 2.11). We give applications to the special
case of principal ideal domains (PIDs) and Crit(G).

In section 3, on chain link fence networks, we compute Υ for an infinite family
of networks with nontrivial boundary which played a key role in the electrical inverse
problem [29]. This computation illustrates and motivates ideas we develop systemat-
ically later (harmonic continuation, covering spaces, sub-∂-graphs). As a preview of
the computation, Figure 1.1 shows a (Z/64)-valued harmonic function on one of the
chain link fence networks. This function has u = 0 and Lu = 0 on the boundary of
the network. One interesting corollary of our analysis is that the Z-module of such
harmonic functions breaks up into the direct sum of harmonic functions which are
zero on the first column of vertices and harmonic functions which are zero on the
second column.

In section 4, we describe categories of ∂-graphs and R-networks, adapted from the
ideas of [42, 6, 41]. We show Υ is a covariant functor from R-networks to R-modules.
We give applications to the critical group and eigenvectors of the Laplacian.

Fig. 1.1. A (Z/64)-valued harmonic function on a graph we will study in section 3. The squares
represent vertices, and edges exist between squares which share a side. The squares on the right and
left sides are identified. The color represents the value of the function; the top bar lists the colors
for 0 through 63 from left to right. (In the printed grayscale version, there is some ambiguity about
which color represents which value; for a more accurate picture, see the online color version.)
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In section 5, on layer-stripping and harmonic continuation, we describe the pro-
cess of layer-stripping borrowed from the theory of resistor networks [15, 13, 29, 26].
This leads to an algebraic characterization of the finite ∂-graphs that can be com-
pletely layer-stripped (Theorem 5.16). We use layer-stripping as a geometric model for
harmonic continuation. A systematic approach to harmonic continuation leads to an
algorithm for simplifying the computation of Υ (Theorem 5.23). Corollaries include
bounds on the number of invariant factors in the sandpile group and the multiplicity
of eigenvalues for graph Laplacians.

In section 6, on functorial properties of layer-stripping, we relate layer-stripping
with the morphisms of ∂-graphs from section 4. We show that if f : G′ → G is a ∂-
graph morphism and if G can be completely layer-stripped to the empty graph, then
so can G′ (Lemma 6.4). The ability to pull back the layer-stripping process leads to
a clean description of how far layer-stripping operations can simplify a finite ∂-graph
in the general case (Theorem 6.11).

Section 7 defines a class of completely reducible networks which can be reduced
to nothing by layer-stripping operations and splitting apart networks that are glued
together at a common boundary vertex. We prove an algebraic characterization of
complete reducibility which is analogous to the one for layerability, and we apply our
theory to boundary-interior bipartite networks.

In section 8, we show that a network and its dual have isomorphic fundamental
modules Υ, generalizing an earlier duality result for the critical group [8, 14]. The
corresponding statement for harmonic functions is that every harmonic function on
G has an essentially unique harmonic conjugate on G†. Harmonic conjugates provide
an alternative approach to a critical group computation of [8] for a simple family of
wheel graphs.

In section 9, on covering maps and symmetry, we sketch potential applications
of symmetry and group actions for understanding the algebraic structure of Υ with
special focus on the torsion primes of the critical group.

The concluding section 10, on open problems, hints at further possible applica-
tions and generalizations.

2. The fundamental module Υ(G,L). We shall generalize the graph Lapla-
cian and critical group in several ways, adapting existing ideas in the literature, espe-
cially those of [21], [4], and [15]. Briefly, we will work over an arbitrary ring R rather
than Z or R, assign weights in R to the edges, modify the diagonal terms of L arbi-
trarily, and choose some boundary vertices at which we will not enforce harmonicity.
We will give our general definitions and then describe the examples we have in mind
in section 2.1.

In the remainder of section 2, we will characterize various algebraic properties of
the fundamental module, including its Tor and Ext functors, in terms of harmonic
functions. In particular, in the case where R is a PID, we will describe several ways
of computing the torsion submodule of the generalized critical group in terms of
harmonic functions, which we will use later on in the paper.

We assume familiarity with basic terminology for graphs, categories, rings, and
modules, as well as basic homological algebra. For background, refer to [2], [44,
Chapters 1–3], [35, Chapters I–V], [43]. We shall also use the theory of modules over
a PID, including the classification of finitely generated modules and the Smith normal
form for morphisms from Rn → Rm (see [20, section 12]).

2.1. Definitions: ∂-graphs, generalized Laplacians, and the module
Υ. We will take the word graph to mean a countable, locally finite, undirected



1046 JEKEL, LEVY, DANA, STROMME, AND LITTERELL

multi-graph. We write V or V (G) for the vertex set of the graph G and E or E(G)
for the set of oriented edges. If e is an oriented edge, e+ and e− refer to its start-
ing and ending vertices, and e refers to its reverse orientation. We use the notation
E(x) = {e : e+ = x} for the set of oriented edges exiting x. The degree of a vertex x
is the number of such edges, that is, deg(x) = |E(x)|.

A graph with boundary (abbreviated to ∂-graph) is a graph with a specified par-
tition of V into two sets V ◦ and ∂V , called the interior and boundary vertices, re-
spectively. We will use the letter G to denote ∂-graphs as well as graphs. We will
sometimes view a graph without boundary as a ∂-graph by taking V ◦ = V and
∂V = ∅.

Let G be a ∂-graph and R a commutative ring. Then RV will denote the free
R-module with basis V ; in the language of topology, RV is the module of 0-chains or
formal R-linear combinations of vertices. Similarly, RV ◦ will denote the free module
with basis V ◦, which is a submodule of RV .

Definition 2.1. A generalized Laplacian for G over R is an R-module morphism
L : RV → RV of the form

Lx = d(x)x+
∑
e∈E(x)

w(e)(x− e−) = for x ∈ V,

where w is a function E → R satisfying w(e) = w(e) and d is a function V → R.

Here d(x) does not represent the diagonal entry of L at x but rather the difference
of the diagonal entry from the standard weighted Laplacian. Note that Lx can also
be written

Lx =

d(x) +
∑
e∈E(x)

w(e)

x−
∑
e∈E(x)

w(e)e−.

Our usage of the term “generalized Laplacian” is consistent with [23, section 13.9].

Definition 2.2. An R-network is a pair (G,L), where G is a ∂-graph and L is
an associated generalized Laplacian over R. We call (G,L) an R×-network if w(e) is
in the group of units R× for every edge e; note we do not assume d(x) ∈ R×.

Definition 2.3. For an R-network (G,L), we define the fundamental R-module
ΥR(G,L) as the R-module

Υ(G,L) = RV/L(RV ◦).

When it is helpful to emphasize the ring R, we will write ΥR(G,L).

Example 2.4. For a ∂-graphG, the standard graph Laplacian Lstd over R = Z cor-
responds to the case where d(x) = 0 and w(e) = 1. Let G be a finite connected graph
(without boundary) considered as a ∂-graph by setting V ◦ = V . Then ΥZ(G,Lstd)
is the cokernel of Lstd : ZV → ZV , which is known to be isomorphic to Crit(G)⊕ Z.
See [9, Theorem 4.2], [23, Theorem 14.13.3], and [21, section 2].

Example 2.5. Lorenzini [33, p. 481] considers the generalized critical group of
arithmetical graphs constructed by taking R = Z, taking w(e) = 1, and choosing
d(x) such that the diagonal entries of L are positive and kerL contains some vector
r : V → N with positive entries. Such graphs arise in algebraic geometry.

Example 2.6. For a weighted graph or resistor network as in [18, section 3.1], [15],
we consider R = R, let w(e) > 0 be the conductance of the edge, and let d(x) = 0.



ALGEBRAIC PROPERTIES OF GRAPH LAPLACIANS 1047

Then L represents the linear map that sends a potential function in RV to the function
in RV giving the net current induced at each vertex. If G is connected and has at
least one boundary vertex, then the submatrix of L with rows and columns indexed
by the interior vertices will be invertible [18, Lemma 3.8]. Therefore, L : RV ◦ → RV
has the maximal rank |V ◦|, so Υ(G,L) will be a vector space over R of dimension
|∂V |.

Example 2.7. Let G be a finite graph without boundary and R = C[z]. Then
zI −Lstd is obtained by taking w(e) = −1 and d(x) = z. We can relate ΥC[z](G, zI −
Lstd) to the eigenspaces and characteristic polynomial of Lstd as follows: Recall that
Lstd is symmetric and hence can be written as SΛS−1, where S is unitary and Λ is
a diagonal matrix with diagonal entries given by the eigenvalues λ1, . . . , λn of Lstd.
Then we have

ΥC[z](G, zI − Lstd) = cokerC[z](zI − Lstd)

= cokerC[z](S(zI − Λ)S−1)

∼=
n⊕
j=1

C[z]/(z − λj).

The summands C[z]/(z − λj) correspond to the eigenspaces of Lstd. In the theory of
modules over a PID, this is an elementary-divisor decomposition of ΥC[z](G, zI−Lstd)
over C[z] (for further algebraic explanation see [20, section 12]). The product of the
elementary divisors (z − λj) is the characteristic polynomial det(zI − Lstd). The
characteristic polynomial of the adjacency matrix relates to our theory in a similar
way. We will develop this example further in Example 2.16 and Proposition 4.14.

2.2. Duality between Υ(G,L) and harmonic functions. We mentioned in
the introduction that R/Z-valued harmonic functions for Lstd are related to Crit(G)
through Pontryagin duality. We will adapt this observation to our more general setting
by interpreting Hom(Υ,−) and Tor1(Υ,−) in terms of harmonic functions. We begin
with the Hom functor.

Recall that if M and N are R-modules, then HomR(M,N) is the set of R-module
morphisms M → N . For an R-module M , let MV be the R-module of functions V →
M (or 0-cochains in the language of topology). Recall MV is naturally isomorphic
to HomR(RV,M). The map L : RV → RV induces a map in the reverse direction
L∗ = Hom(L,M) : MV → MV . Explicitly, if u : V → M , then L∗u : V → M is
given by

L∗u(x) = u(Lx) = d(x)u(x) +
∑
e∈E(x)

w(e)(u(x)− u(e−)).

Observe that L∗stdu corresponds to the standard Laplacian on functions V → Z.
If we express L with a matrix using the standard basis for RV , then the L∗ :

MV → MV is given by the transposed matrix. However, the matrix of L in the
standard basis is symmetric, and thus L∗ : MV → MV is given by the same matrix
as L. Hence, for a finite ∂-graph, if we identify RV with RV , then L and L∗ are the
same operator.

In light of this fact, it does not seem necessary for our notation to distinguish
between L and L∗. Henceforth, we will denote them both by L. However, we will
preserve the distinction between the chain module RV and the cochain module RV

(and of course the cochain module MV for each R-module M). The domain and
codomain for the various operators denoted by L will be made clear in context.
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Definition 2.8. Let (G,L) be an R-network. We say that u : V → M is har-
monic if Lu(x) = 0 for every x ∈ V ◦. We denote the R-module of harmonic func-
tions by

U(G,L,M) = {u ∈MV : Lu|V ◦ ≡ 0}.
Note that U(G,L,−) is a covariant functor R-mod → R-mod. The significance

of harmonic functions to the study of Υ comes from the following module-theoretic
duality between Υ(G,L) and U(G,L,M).

Lemma 2.9. For every R-network (G,L), there is a natural R-module isomor-
phism

U(G,L,M) ∼= HomR(Υ(G,L),M).

Proof. A function u : V → M is equivalent to an R-module morphism u : RV →
M , and (Lu)(x) = (L∗u)(x) = u(Lx). Thus, u is harmonic if and only if

(Lu)(x) = u(Lx) = 0 for each x ∈ V ◦.

In other words, u is harmonic if and only if it vanishes on L(RV ◦). Thus, harmonic
functions are equivalent to R-module morphisms RV/L(RV ◦)→M , and Υ(G,L) was
defined as RV/L(RV ◦).

2.3. Torsion and degeneracy. In this section, we will describe
Torj(Υ(G,L),M) in terms of harmonic M -valued functions. To motivate the dis-
cussion, recall that for a graph without boundary with edge weights 1, we have
ΥZ(G,Lstd) ∼= Crit(G) ⊕ Z. In this case, the most interesting part of ΥZ(G,Lstd)
is its torsion submodule Crit(G). Similarly, when R is a PID and (G,L) is a finite R-
network, the nontrivial task will be to understand the torsion submodule of Υ(G,L)
(see Proposition 2.20 below for further explanation).

The Tor functor is a standard homological tool which can (among other things)
detect the torsion part of a finitely generated module over a PID. The Tor functors
are defined as the left-derived functors of the tensor-product functor N ⊗ −. An
R-module N is called flat if N ⊗ − is exact, which is equivalent to Torj(N,−) = 0
for j > 0 (see [2, Exercise 2.25]). If R is a PID, then N is flat if and only if it is
torsion-free (see [20, Exercise 10.4.26]).

The functor Tor1(Υ(G,L),−) turns out to have an easy description in terms of
harmonic functions.

Definition 2.10. Define

U0(G,L,M) = {finitely supported u ∈MV : Lu ≡ 0 and u|∂V ≡ 0}.

Proposition 2.11. Suppose R is a commutative ring and (G,L) is an R-network.
If U0(G,L,R) = 0, then we have a natural R-module isomorphism

U0(G,L,M) ∼= TorR1 (Υ(G,L),M),

and TorRj (Υ(G,L),M) = 0 for j > 1. In the case where U0(G,L,R) 6= 0, we still have
a natural surjection

U0(G,L,M) � TorR1 (Υ(G,L),M).

Proof. Note that RV ◦ can be interpreted as the module of finitely supported
R-valued functions that vanish on ∂V . Thus, U0(G,L,R) is the kernel of the map
L : RV ◦ → RV . Since we assumed U0(G,L,R) = 0, we know that

· · · → 0→ RV ◦
L−→ RV → Υ→ 0
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is a free resolution of Υ. Thus, Torj(Υ,M) is the homology of the sequence

· · · → 0→ RV ◦ ⊗M L⊗id−−−→ RV ⊗M → 0.

Thus, Torj(Υ,M) = 0 for j > 1, and Tor1(Υ,M) is the kernel of the map L ⊗
id : RV ◦ ⊗M → RV ⊗M . We can identify RV ◦ ⊗M with the module of finitely
supported functions u : V → M with u|∂V = 0, and then L ⊗ id is simply the gen-
eralized Laplacian. Hence, the kernel of L ⊗ id : RV ◦ ⊗M → RV ⊗M is precisely
U0(G,L,M). Thus, TorR1 (Υ(G,L)) ∼= U0(G,L,M), and the naturality of the isomor-
phism with respect to M is easy to verify from the construction.

In the general case, we have a free resolution

· · · → F3 → F2 → RV ◦
L−→ RV → Υ→ 0.

Then Tor1(Υ(G,L),M) is obtained as a quotient of the kernel of L⊗ id : RV ◦⊗M →
RV ⊗M , so there is a surjection U0(G,L,M) � TorR1 (Υ(G,L),M).

We will call an R-network nondegenerate if U0(G,L,R) = 0 and degenerate if
U0(G,L,R) 6= 0. Thus, Proposition 2.11 shows that if (G,L) is nondegenerate, then
U0(G,L,M) ∼= TorR1 (Υ(G,L),M). We shall now show how nondegeneracy holds
whenever the edge weights are positive as elements of an ordered ring (like the edge
weights in a resistor network).

Definition 2.12. An ordered ring [31, Chapter 6] is a ring R together with a
(transitive) total order < given on R such that, for all elements a, b, c ∈ R,

a < b =⇒ a+ c < b+ c,

0 < a and 0 < b =⇒ 0 < ab.

Proposition 2.13. Suppose R is an ordered commutative ring and (G,L) is an
R-network. Assume w(e) > 0 for all e ∈ E and d(x) ≥ 0 for all x ∈ V . Assume G
is connected and one of the following holds: (A) ∂V 6= ∅, (B) V is infinite, or (C)
there exists x ∈ V with d(x) > 0.

(1) If u is a finitely supported harmonic function and u|∂V = 0, then u = 0.
(2) If u is a finitely supported harmonic function and Lu|∂V = 0, then u is

constant. Moreover, if (B) or (C) holds, then u = 0.
(3) We have U0(G,L,R) = 0, so the network is nondegenerate.

Proof. This is a standard argument; one version can be found in [18, section 3.4
and Lemma 3.8]. For finitely supported functions u, v : V → R, denote 〈u, v〉 =∑
x∈V u(x)v(x). Observe that

〈u, Lu〉 =
∑
x∈V

u(x)

d(x)u(x) +
∑
e∈E(x)

w(e)[u(x)− u(e−)]

 .

If we let E′ be a set of oriented edges containing exactly one of the two orientations
for each edge, then algebraic manipulation yields

〈u, Lu〉 =
∑
x∈V

d(x)u(x)2 +
∑
e∈E′

w(e)[u(e+)− u(e−)]2.

This is a sum of all nonnegative terms. Thus, if 〈u, Lu〉 = 0, we must have u(e+) −
u(e−) = 0 for all e ∈ E′, which implies u is constant since G is connected. Moreover,
if (B) holds, then since u is finitely supported, u must be zero at some vertex and so
u ≡ 0. If (C) holds and d(x) > 0, then u(x) = 0 as well and hence u ≡ 0.
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0

1 1

0

Fig. 2.1. A Z-network with 2-torsion; • ∈ ∂V , ◦ ∈ V ◦, and w(e) = 1. The numbers depict a
nonzero element of U0(G,Lstd,Z/2).

To prove (1), suppose u is harmonic (that is, Lu|V ◦ = 0) and u|∂V = 0. Then

〈u, Lu〉 =
∑
x∈V ◦

u(x)Lu(x) +
∑
x∈∂V

u(x)Lu(x) = 0.

This implies u is constant. If (A) holds, then u|∂V = 0 implies that u ≡ 0, and if (B)
or (C) holds, then the preceding argument already implies u ≡ 0.

To prove (2), suppose u is harmonic and Lu|∂V = 0. This amounts to saying
Lu = 0 on all of V , which of course implies that 〈u, Lu〉 = 0. Thus, (2) follows
from the preceding argument. Moreover, (3) is an immediate consequence of either
(1) or (2).

In the language of PDE, (1) is a uniqueness principle for the Dirichlet problem and
(2) is a uniqueness principle for the Neumann problem. For a function u to be in U0,
it must violate both uniqueness principles simultaneously. While this is impossible
for R-valued functions under the hypotheses of Proposition 2.13, it is possible for
functions taking values in an R-module M . In fact, Proposition 2.11 says that torsion
of Υ(G,L) corresponds to failure of the uniqueness principles for M -valued harmonic
functions. In electrical language, for a nondegenerate network, Tor1(Υ,M) 6= 0 if and
only if there are harmonic M -valued functions that are not detectable from boundary
measurements of potential and current.

Example 2.14. Figure 2.1 shows a nondegenerate Z-network such that

Tor1(ΥZ(G,Lstd),Z/2) = U0(G,Lstd,Z/2) 6= 0.

Nondegeneracy follows from Proposition 2.13, and a nonzero element of U0(G,Lstd)
is shown in Figure 2.1. In fact, ΥZ(G,Lstd) ∼= Z2 ⊕ Z/2 (see Example 2.21).

Since torsion of Υ(G,L) and degeneracy of (G,L) are both measured by conditions
of the form U0(G,L,M) 6= 0, it is not surprising that they are related. As a corollary
of Proposition 2.11, we can show that torsion of Υ for a nondegenerate network over R
is equivalent to degeneracy of networks over quotient rings of R. Given an R-network
(G,L) and an ideal a ⊂ R, define (G,L/a) as the R/a-network obtained by reducing
the edge weights modulo a.

Corollary 2.15. Let (G,L) be a nondegenerate R-network. If a is an ideal of R,
then Tor1(Υ(G,L), R/a) = 0 if and only if (G,L/a) is nondegenerate. Hence, Υ(G,L)
is flat if and only if (G,L/a) is nondegenerate for every proper ideal a. Moreover, it
suffices to check prime ideals or maximal ideals.

Proof. Note that for every function u : V → R/a, we have Lu = (L/a)u, and
hence

TorR1 (ΥR(G,L), R/a) ∼= UR0 (G,L,R/a) = UR/a0 (G,L/a, R/a).
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The first claim follows. For the second claim, recall that an R-module N is flat if and
only if Tor1(N,R/a) = 0 for all proper ideals a ⊂ R, and it suffices to check prime
ideals or maximal ideals [2, Exercise 2.26], [44, Corollary 3.2.13].

Example 2.16. As in Example 2.7, let G be a finite graph without boundary and
consider the C[z]-network (G, zI−Lstd). Since det(zI−Lstd) 6= 0, we know zI−Lstd

is an injective map C[z]V → C[z]V and hence the network is nondegenerate. Recall
that the maximal ideals of C[z] are {(z − λ) : λ ∈ C}. For each λ ∈ C, the quotient
C[z]/(z − λ) is a field isomorphic to C via the obvious map C → C[z]/(z − λ). For
each λ,

Tor1(ΥC[z](G, zI − Lstd),C[z]/(z − λ)) ∼= U0(G, zI − Lstd,C[z]/(z − λ)).

If we reinterpret the right-hand side in terms of the quotient network over C[z]/(z−λ)
and apply the standard isomorphism C[z]/(z − λ) ∼= C, we see that there is a vector
space isomorphism

U0(G, zI − Lstd,C[z]/(z − λ)) ∼= U0(G,λI − Lstd,C),

where the right-hand side is computed over R = C. This is precisely the λ-eigenspace
of Lstd if λ is an eigenvalue and zero otherwise.

In the next example, for a finite ∂-graph G and a field F , we will model a general
F×-network by assigning indeterminates as edge weights. This construction will be
used in our algebraic characterization of layerability (Theorem 5.16).

Definition 2.17. Let G be a finite ∂-graph and let F be a field. We define the
ring R∗(G,F ) and generalized Laplacian L∗(G,F ) as follows. Let R∗(G,F ) be the
polynomial algebra over F generated by indeterminates {tx : x ∈ V } and {t±1e : e ∈
E}, where te = te. The generalized Laplacian L∗ over R∗ is given by the functions
w∗(e) = te and d∗(x) = tx.

Proposition 2.18. The (R∗)×-network (G,L∗) defined above is nondegenerate.
If Υ(G,L∗) is a flat R∗-module, then every F×-network on the ∂-graph G is non-
degenerate. Moreover, the converse holds if F is algebraically closed.

Proof. First we prove nondegeneracy. Note that detL∗ is clearly a nonzero poly-
nomial, hence L∗ : R∗V → R∗V is injective. If u ∈ U0(G,L∗, R∗), then we have
L∗u ≡ 0 (that is, L∗u(x) = 0 both for x ∈ V ◦ and x ∈ ∂V ), and therefore, u ≡ 0 by
injectivity of L∗.

Next, we show that flatness of Υ(G,L∗) implies non-degeneracy of every F×-
network (G,L). Suppose that L is a generalized Laplacian over F given by w : E →
F× and d : V → F . Let a be the ideal in R∗ generated by te − w(e) for e ∈ E and
tx − d(x) for x ∈ V . Then a is a maximal ideal and R∗/a is a field isomorphic to
F , where te is identified with w(e) ∈ F× and tx is identified with d(x). Therefore,
(G,L∗/a) corresponds to the F×-network (G,L). Thus, by Corollary 2.15, we have a
vector space isomorphism

TorR
∗

1 (Υ(G,L∗), R∗/a) ∼= U0(G,L∗/a, R∗/a) ∼= U0(G,L, F ).

In particular, flatness of ΥR∗(G,L
∗) implies that every F×-network on the ∂-graph

G is nondegenerate.
Furthermore, the converse holds if F is algebraically closed. Indeed, in this case,

every maximal ideal a of R∗ has the form

a = (te − w(e) : e ∈ E; tx − d(x) : x ∈ V )
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for some w : E → F and d : V → F . (This can be deduced by noting that R∗ is
a localization of the polynomial algebra F [te : e ∈ E; tx : x ∈ V ], and every proper
ideal in the polynomial algebra F [x1, . . . , xn] must have a common zero by Hilbert’s
Nullstellensatz [2, Exercise 5.17], [20, section 15.3, Corollary 33].) Then since te is a
unit in R∗ by construction, we deduce that w(e) is nonzero. Thus, w and d define an
F×-network on G, which corresponds to (G,L/a). Hence, if every F×-network on G

is nondegenerate, then TorR
∗

1 (Υ(G,L∗), R∗/a) = 0 for every maximal ideal and hence
Υ(G,L∗) is flat.

2.4. Exactness of U(G,L,−). In section 2.3, we interpreted flatness of Υ(G,L)
in terms of harmonic functions, and now we will (quite briefly) do the same for projec-
tiveness of Υ(G,L), which is detected by the functors Extj(Υ(G,L),−). Once again,
we are largely motivated by the situation where Υ(G,L) is a finitely generated module
over a PID R, in which case the functors Extj(Υ(G,L),−) completely describe the
torsion submodule of Υ(G,L).

Recall that for an R-module N , Hom(N,−) is always left exact, and N is called
projective if it is also right exact. The failure of N to be projective is measured by the
functors Extj(N,−), which are the right-derived functors of Hom(N,−). Moreover,
N is projective if and only if Ext1(N,−) = 0. Free modules are always projective.
If R is a PID and N is a finitely generated R-module, then N is torsion-free if and
only if it is projective (as one can deduce from the classification of finitely generated
modules over a PID).

The fundamental module Υ is projective if and only if Hom(Υ(G,L),−) =
U(G,L,−) is right exact. Thus, concretely, right exactness asks, Given a surjec-
tive map M → N between R-modules, is U(G,L,M)→ U(G,L,N) a surjection? In
other words, does every N -valued harmonic function on (G,L) lift to an M -valued
harmonic function?

Example 2.19. U(G,L,−) fails to be right exact for the Z-network in Figure 2.2.
Consider the surjection Z/4→ Z/2. The corresponding map U(G,L,Z/4) →
U(G,L,Z/2) is not surjective. If u ∈ U(G,L,Z/4), then 2u(B) = u(A) + u(D) =
2u(C) mod 4, and hence u(B) = u(C) mod 2. However, not all Z/2-valued harmonic
functions satisfy u(B) = u(C); for instance, the indicator function 1B : V → Z/2 is
harmonic.

2.5. Summary of homological properties. Our results thus far provide a
lexicon giving “harmonic” or “electrical” interpretations of the homological properties
of Υ for nondegenerate networks:

(1) As remarked in the proof of Proposition 2.11, Υ(G,L) has a free resolution

given by 0→ RV ◦
L−→ RV → Υ(G,L)→ 0.

(2) Hom(Υ(G,L),M) = U(G,L,M) is the module of M -valued harmonic func-
tions.

0

1 0

0

Fig. 2.2. A Z-network with 2-torsion; • ∈ ∂V , ◦ ∈ V ◦, and w(e) = 1. The numbers depict a
Z/2-valued harmonic function that does not lift to a Z/4-valued harmonic function.
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(3) Tor1(Υ(G,L),M) = U0(G,L,M) is the module of finitely supported har-
monic functions with vanishing potential and current on the boundary.

(4) Ext1(Υ(G,L),−) is the right-derived functor of U(G,L,−) =
HomR(Υ(G,L),−). It measures the failure of N -valued harmonic functions
to lift to M -valued harmonic functions when M → N is surjective.

(5) Using our free resolution of Υ(G,L), we can also compute Ext1(Υ(G,L),M)
as the cokernel of L : MV → MV ◦ . In other words, it is the module of M -
valued functions on V ◦ modulo those that arise as the generalized Laplacian
(or net current) of M -valued potentials on V .

These observations lead to many different ways of computing Υ when the ring R
is a PID such as Z or C[z] (Proposition 2.20). We recall the following terminology and
facts about PIDs. A ring is called a PID if every ideal is generated by a single element.
The classification of finite abelian groups (or Z-modules) generalizes to PIDs: if R is
a PID, then any finitely generated R-module is isomorphic to one of the form

R⊕m ⊕
n⊕
j=1

R/fj ,

where fj |fj+1. The numbers of fj are called the invariant factors of M . We call
R⊕m and

⊕n
j=1R/fj respectively the free submodule and torsion submodule of M .

For details, see [20, section 12.1].

Proposition 2.20. Let R be a PID, F its field of fractions, and (G,L) a finite
nondegenerate R-network. Then the free submodule of Υ(G,L) has rank |∂V |. More-
over, the following are (noncanonically) isomorphic:

(1) The torsion submodule of Υ(G,L).
(2) The cokernel of L : RV → RV

◦
.

(3) U(G,L, F/R) modulo the image of U(G,L, F ).
(4) U0(G,L, F/R) = Tor1(Υ(G,L), F/R).

Thus, in particular,

(2.1) Υ(G,L) ∼= R|∂V | ⊕ U0(G,L, F/R).

Proof. To show that the free rank is |∂V |, note that since (G,L) is nondegenerate,
we have a short exact sequence

0→ RV ◦
L−→ RV → Υ(G,L)→ 0.

Let Υ(G,L) ∼= Rn⊕N , where N is the torsion submodule. Since F is a flat R-module,
we have a short exact sequence

0→ F ⊗RV ◦ L−→→ F ⊗RV → (F ⊗Rn)⊕ (F ⊗N)→ 0.

However, F ⊗N = 0. Thus, our sequence becomes 0→ FV ◦ → FV → Fn → 0, and
the rank-nullity theorem implies n = |V | − |V ◦| = |∂V |.

Next, we prove that (1)–(4) are isomorphic. Note (2) and (3) are two different
ways of evaluating Ext1(Υ(G,L), R); (2) uses the projective resolution of Υ(G,L)
and (3) uses the injective resolution of R given by 0 → R → F → F/R → 0. To
show that the torsion submodule of Υ(G,L) is isomorphic to Tor1(Υ(G,L), F/R) and
Ext1(Υ(G,L), R), decompose Υ(G,L) as the direct sum of cyclic modules.

To check (2.1), recall Υ(G,L) ∼= Rn ⊕ N , where Rn is the free submodule and
N is the torsion submodule. The preceding argument showed that n = |∂V | and
N ∼= U0(G,L, F/R).
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Fig. 2.3. The complete boundary-interior bipartite ∂-graph K3,2.

Example 2.21 (complete bipartite graphs). Consider the complete bipartite graph
Km,n whose partite sets consist of m boundary vertices and n interior vertices, re-
spectively (see Figure 2.3 for an example). The standard Laplacian Lstd : RV → RV

◦

is

Lstd =


−1 · · · · · · −1 m
...

. . .
. . .

...
. . .

...
. . .

. . .
...

. . .

︸ ︷︷ ︸
∂V

− 1 · · · · · · −1 ︸ ︷︷ ︸
V ◦

m


and its cokernel is isomorphic to (Z/m)n−1. Dually,

U0(G,Lstd,Q/Z) =

{
u ∈ (Q/Z)V

◦
: mu = 0,

∑
x∈V ◦

u(x) = 0

}
∼= (Z/m)n−1.

Hence, by (2.1) in Proposition 2.20, we have

Υ(G,Lstd) ∼= Zm ⊕ (Z/m)n−1.

2.6. Application to critical group. Let us examine how our algebraic con-
structions work out in the case of the critical group.

Proposition 2.22. Let G be a connected graph without boundary, considered as
a ∂-graph with zero boundary vertices.

(1) Crit(G) is the torsion submodule of ΥZ(G,Lstd).
(2) For every vertex x, the map Zx → ΥZ(G,Lstd) is injective and we have an

internal direct sum ΥZ(G,Lstd) = Zx⊕ Crit(G).
(3) We have U(G,Lstd,Q/Z) ∼= Crit(G)×Q/Z.
(4) We have U0(G,Lstd,Q/Z) = U(G,Lstd,Q/Z).

Proof. Let ε : ZV → Z be the map given by x 7→ 1 for every x ∈ V . Note that
Lstd(ZV ) ⊆ ker ε. Moreover, it is well-known that Lstd has rank |V | − 1 when G is
connected (see, e.g., [18, Lemma 3.8]), so that ker ε/ imLstd is a torsion Z-module,
and this is known to be isomorphic to Crit(G) [9, Theorem 4.2], [21, Definition 2.2].
For each vertex x, we have ZV = Zx⊕ ker ε, which implies that

ZV/ imLstd = Zx⊕ Crit(G).

This establishes (1) and (2). Next, (3) follows by applying Hom(−,Q/Z) to (2) and
using Lemma 2.9, and (4) follows from the definition of U and U0 because there are
no boundary vertices.

Several constructions of the critical group involve designating a “sink” vertex x.
In a similar way, we can choose a boundary vertex x when computing Crit(G).

Proposition 2.23. Let G be a connected graph without boundary, and let G′ be
obtained from G by assigning one boundary vertex x.
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(1) The network (G′, Lstd) is nondegenerate.
(2) We have ΥZ(G′, Lstd) = ΥZ(G,Lstd), hence (1), (2), and (3) of Proposi-

tion 2.22 hold with G replaced by G′.
(3) We have U0(G,Lstd,Q/Z) ∼= Tor1(Υ(G′, Lstd),Q/Z) ∼= Crit(G).

Proof. Nondegeneracy follows from Proposition 2.13. Let V ◦ denote V ◦(G′) =
V (G) \ {x}. To prove that Υ(G,Lstd) = Υ(G′, Lstd), it suffices to show that
Lstd(ZV ◦) = Lstd(ZV ). Recall that the constant vector c0 is in the kernel of Lstd. If
w ∈ Lstd(ZV ), then w = Lstdz for some z ∈ ZV . By subtracting a multiple of the c0,
we can assume that the coordinate of z corresponding to the vertex x is zero. This
means z ∈ ZV ◦, so w ∈ Lstd(ZV ◦).

From Υ(G,Lstd) = Υ(G′, Lstd), it immediately follows that Crit(G) is the tor-
sion submodule of Υ(G′, Lstd). From the application of HomZ(−,M), we see that
U(G,Lstd,M) = U(G′, Lstd,M) for every Z-module M , and hence U(G′, Lstd,Q/Z) ∼=
U(G,Lstd,Q/Z) ∼= Crit(G)×Q/Z. Finally, (3) follows from Proposition 2.20.

3. A family of “chain link fence” networks.

3.1. Motivation and set-up. To date, the theory of the critical group has
mainly focused on graphs without boundary. In this section, we will analyze an in-
finite family of ∂-graphs with nontrivial boundary. These ∂-graphs resemble a chain
link fence which embeds either on the cylinder or on the Möbius band (depending on
parity). This family is a variant of the “purely cylindrical” graphs described in [29]
which play a key role in the electrical inverse problem. Though self-contained, our
computation here will illustrate and motivate techniques that we will develop system-
atically later in the paper—including discrete harmonic continuation, symmetry and
covering spaces, and subgraphs.

Consider a ∂-graph clf(m,n) with V = Z/m× {0, . . . , n} and ∂V = Z/m× {0}
and edges defined by

(j, k) ∼ (j + 1, n− k + 1) for k ≥ 1,

(j, k) ∼ (j + 1, n− k) for k ≥ 0,

as shown in Figure 3.1. If m is even, then the network is one of the Lam and
Pylyavskyy’s “purely cylindrical graphs” and it embeds into the cylinder or the an-
nulus (see Figure 3.2). If m is odd, then it resembles a chain-link fence twisted into
a Möbius band.

(0,0)

(0,1)

(0,2)

(2,0)

(2,1)

(2,2)

(4,0)

(4,1)

(4,2)

(6,0)

(6,1)

(6,2)

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(3,0)

(3,1)

(3,2)

(5,0)

(5,1)

(5,2)

(7,0)

(7,1)

(7,2)

Fig. 3.1. The ∂-graph clf(8, 2). Boundary vertices are black, interior vertices are white, and
the vertices on the left and right sides are identified along the dashed lines.
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Fig. 3.2. The ∂-graph clf(12, 1) embedded in the annulus rather than the cylinder.

Consider the Z-network (clf(m,n), Lstd). Since the network is nondegenerate
(Proposition 2.13), we have by (2.1) in Proposition 2.20 that

ΥZ(clf(m,n), Lstd) ∼= Z|∂V | ⊕ U0(clf(m,n), Lstd,Q/Z).

We will compute the torsion summand U0(clf(m,n), Lstd,Q/Z), showing the follow-
ing.

Theorem 3.1. For the Z-network (clf(m,n), Lstd), we have

U0(clf(m,n), Lstd,Q/Z) ∼=



(Z/2)n, m odd,

(Z/2)2n, m ≡ 2 mod 4, n⊕
j=1

Z/ gcd(4j , 2m)

⊕2 , m ≡ 0 mod 4.

In section 3.2, we use harmonic continuation to write our module in a simple
form in terms of a 2n × 2n matrix T (Lemma 3.2). Then in section 3.3, we work
algebraically to find the invariant factor decomposition. Finally, in section 3.4, we
will bootstrap our computation to handle a slightly different family of ∂-graphs.

3.2. Harmonic continuation computation. Since we will deal with vectors
in Zn as well as Z2n, we establish the following notational conventions:

• Vectors in Zn or (Q/Z)n will be lowercase regular type.
• n× n matrices will be uppercase regular type.
• Vectors in Z2n or (Q/Z)2n will be lowercase bold.
• 2n× 2n matrices will be uppercase bold.
• “·” denotes the dot product.
• e1, . . . , en and e1, . . . , e2n denote the standard basis vectors.
• Vectors are assumed to be column vectors by default.

Moreover, we will abbreviate U0(clf(m,n), Lstd,Q/Z) to U(m,n).
Our goal is to compute the Q/Z-valued harmonic functions with u = Lu = 0 on

∂V . We start by understanding the harmonic functions with u = 0 on the bound-
ary using harmonic continuation around the circumference of the cylinder. Assume
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u(j, 0) = 0 and let

aj =

u(j, 1)
...

u(j, n)

 ∈ (Q/Z)n.

The idea is to solve for aj+1 in terms of aj and aj−1 such that partial function defined
by aj−1, aj , and aj+1 will be harmonic on the jth column of vertices. Thus, we start
with a1 and a0, then find a2, a3, . . . . Recall the index j for vertices in the graph is
reduced modulo m. The aj ’s to yield a well-defined harmonic function on clf(m,n),
we require that am = a0 and am+1 = a1.

In terms of the aj ’s, harmonicity amounts to

4aj = Eaj−1 + Eaj+1,

where E is the n × n matrix with 1’s on and directly above the skew-diagonal and
zeros elsewhere—for instance,

E =


0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0
1 0 0 0 0

 , n = 5.

Thus, the vectors aj satisfy the recurrence relation(
aj+1

aj

)
=

(
4E−1 −I
I 0

)(
aj
aj−1

)
.

Let T be the 2n× 2n “propagation matrix” of harmonic continuation, that is,

T =

(
4E−1 −I
I 0

)
.

Note that det T = ±1, so T is invertible over Z. Multiplying by T−1 corresponds
to harmonic continuation in the opposite direction around the circumference of the
cylinder.

Let us denote a = (a1, a0)T ∈ (Q/Z)2n. Through harmonic continuation, we can
see that

{u ∈ U(clf(m,n),Q/Z) : u|∂V = 0} ∼= {a ∈ (Q/Z)2n : Tma = a}.

Next, we must determine when a fixed point of Tm will yield a harmonic function u
with Lu|∂V = 0, which amounts to writing all the net current conditions in terms of
the first two columns of vertices. The net current at a boundary vertex (j, 0) is

Lu(j, 0) = −u(j − 1, n)− u(j + 1, n) = −e2n ·Tj−1a− e2n ·Tj+1a.

We need to choose a so that this holds for j = 1, . . . ,m, but since we also require a
to be a fixed point of Tm, we might as well require e2n · (Tj−1 + Tj+1)a = 0 for all
j ∈ Z. Therefore, we have the following.

Lemma 3.2.

U(m,n) ∼= {a ∈ (Q/Z)2n : Tma = a and e2n · (Tj−1 + Tj+1)a = 0 for j ∈ Z}.
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3.3. An explicit basis for U0. A key insight in the remaining computation is
to consider the two conditions Tma = a and e2n · (Tj−1 +Tj+1)a = 0 separately. We
denote

M1 = {a ∈ (Q/Z)2n : e2n · (Tj−1 + Tj+1)a = 0 for j ∈ Z},
M2 = {a ∈ (Q/Z)2n : Tma = a}.

Observe that U(m,n) ∼= M1 ∩M2.

Remark 3.3. Here is a geometric interpretation of M1 and M2. Note that the
universal cover of the cylinder or Möbius band is an infinite strip, and clf(m,n)
is covered by a corresponding graph clf(∞, n) with vertex set Z × {0, . . . , n}. The
condition defining M1 says that harmonic continuation with initial values a defines
a harmonic function on clf(∞, n) with u = 0 and Lstdu = 0 on the boundary. The
condition defining M2 says that u(j, k) is periodic in j, and hence u corresponds to a
harmonic function on clf(m,n).

We will compute M1 first, using two auxiliary lemmas. In the following, Z[4E−1]
will denote the subring of Mn×n(Z) generated by 4E−1 and Z[T,T−1] will denote the
subring of M2n×2n(Z) generated by T and T−1. We use (I, 0) · Z[T,T−1] to denote
the Z-submodule of Mn×2n(Z) consisting of matrices of the form (I, 0) · S, where
S ∈ Z[T,T−1] and (I, 0) ∈ Mn×2n(Z) is written as a matrix with two n × n blocks.
The notation Z[4E−1] · (I, 0) is to be interpreted similarly.

Lemma 3.4. We have an equality of Z-modules

(I, 0) · Z[T,T−1] = Z[4E−1] · (I, 0) + Z[4E−1] · (0, I).

Proof. The inclusion ⊆ is straightforward since T and T−1 are block 2×2 matrices
with block entries in Z[4E−1]. To prove the opposite inclusion, first observe that

T−1 =

(
0 I
−I 4E−1

)
.

Then note that

(I, 0) = (I, 0)I ∈ (I, 0) · Z[T,T−1](0, I) = (I, 0)T−1 ∈ (I, 0) · Z[T,T−1].

Moreover,

T + T−1 =

(
4E−1 0

0 4E−1

)
= 4F,

where F := diag(E−1, E−1). Thus, 4F ∈ Z[T,T−1]. This implies

(4jE−j , 0) = (I, 0)4jFj ∈ (I, 0) · Z[T,T−1],

(0, 4jE−j) = (0, I)4jFj ∈ (I, 0) · Z[T,T−1],

and thus all of Z[4E−1] · (I, 0) + Z[4E−1] · (0, I) is contained in (I, 0) · Z[T,T−1].

Lemma 3.5. The row vectors {etnE−j}n−1j=0 are a basis for Zn.

Proof. Because E is invertible over Z, it suffices to show that {etnE−jEn−1}n−1j=0 =

{etnEj}n−1j=0 is a basis for Zn. Moreover, to show it is a basis, it suffices to show that
it spans Zn; linear independence will follow automatically because our collection of
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vectors has n elements. Let Wk be the Z-span of etn, e
t
nE, . . . , e

t
nE

k−1. We can show
by induction on k that Wk includes the first k vectors from the ordered basis

e1n, e
t
1, e

t
n−1, e

t
2, e

t
n−2, e

t
3, . . . .

The general procedure is clear from the first few steps:
• We have etn ∈W1 trivially.
• Because etn ∈W1 and etnE = et1, we have et1 ∈W2.
• Next, because et1 ∈ W2, we have et1E = etn + etn−1 ∈ W3. Moreover, etn ∈
W1 ⊆W3, so that etn−1 ∈W3.

• Next, because etn−1 ∈W3, we have etn−1E = et1 +et2 ∈W4, which implies that
et2 ∈W4.

At the last step of the induction, we obtain Wn = Zn as desired.

Lemma 3.6.

M1
∼=

 n⊕
j=1

Z/4j
⊕2

Proof. Noting that et2nT = etn, we have

M1 = {a ∈ (Q/Z)2n : en · (Tj−1 + Tj+1)a = 0 for j ∈ Z}.

As in the proof of Lemma 3.4, we have T + T−1 = 4F, and hence,

M1 = {a ∈ (Q/Z)2n : 4en ·TjFa = 0 for j ∈ Z}.

Since F is invertible, we can view it as a change of coordinates on (Q/Z)2n and replace
Fa by a, so that

M1
∼= {a ∈ (Q/Z)2n : 4etnTja = 0 for j ∈ Z}.

We can rewrite etnTj as etn(I, 0)Tj , where I and 0 are n×n identity and zero matrices,
respectively, as mentioned above. Let N ⊆ Z2n be the module of row vectors in Z2n

given by
N = 4etn(I, 0)(Z[T,T−1]) = {4etn(I, 0)S : S ∈ Z[T,T−1]}.

Then we have
M1
∼= {a ∈ (Q/Z)2n : nta = 0 for all nt ∈ N}.

The remainder of the proof will use Lemmas 3.4 and 3.5 to exhibit a convenient basis
for N from which the invariant factors decomposition of M1 will be obvious.

From Lemma 3.5, we deduce that

{etnE−j(I, 0)}n−1j=0 ∪ {e
t
nE
−j(0, I)}n−1j=0 is a basis for Z2n,

where vectors in Z2n are viewed as row vectors. Denote this new basis by {wt
1, . . . ,w

t
2n}.

Meanwhile, substituting the result of Lemma 3.4 into the definition of N shows that

N is spanned by {4etn(4E−1)j(I, 0)}n−1j=0 ∪ {4e
t
n(4E−1)j(0, I)}n−1j=0 ,

These vectors are scalar multiples of the basis vectors for Z2n given in the previous
equation, hence independent, and thus

{4wt
1, . . . , 4

nwt
n, 4wt

n+1, . . . , 4wt
2n} is a basis for N.
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Let S : Z2n → Z2n be the change of basis matrix such that wt
jS = etj . Then changing

coordinates by S on (Q/Z)2n yields

M1
∼= {a ∈ (Q/Z)2n : nta = 0 for all nt ∈ N}
∼= {a ∈ (Q/Z)2n : ntSa = 0 for all nt ∈ N}
= {a ∈ (Q/Z)2n : 4et1a = 0, . . . , 4netna = 0, 4etn+1a, . . . , 4

ne2na}

∼=

 n⊕
j=1

(Z/4j)

⊕2 .
Having computed M1, we now turn to M2. Although M2 itself is difficult to

compute, we now know that M1 is a 2-torsion module. Thus, we only have to compute
the 2-torsion submodule of M2, which greatly simplifies the task. Let Z[1/2] denote
subring of Q generated by Z and 1/2, viewed as a Z-module, or equivalently the
Z-module of rational numbers whose denominators are powers of 2. Let

M ′2 = M2 ∩ (Z[1/2]/Z)2n = {a ∈ (Z[1/2]/Z)2n : (Tm − I)a = 0}.

Since M1 ⊆ (Z[1/2]/Z)2n, we know that

U0(clf(m,n),Q/Z) ∼= M1 ∩M2 = M1 ∩M ′2.

We will determine the 2-torsion properties of Tm − I by finding an accurate enough
2-adic expansion of it.

Lemma 3.7. Suppose m = r2s with r odd. Then

M ′2
∼=


(Z/2)n, m odd,

(Z/2)2n, m ≡ 2 mod 4,

(Z/2s+1)2n, m ≡ 0 mod 4.

Proof. First, consider the case where m is not divisible by 4, or equivalently s ≤ 2.
Note that

T =

(
0 −I
I 0

)
mod 4.

Hence, when m = 1 mod 4,

Tm − I =

(
−I −I
I −I

)
mod 4.

The kernel of this map on (Z[1/2]/Z)2n is therefore isomorphic to (Z/2)n. The case
where m = 3 mod 4 is similar. When m = 2 mod 4, then Tm − I = −2I mod 4, so
we get M ′2

∼= (Z/2)2n.
To handle the case where m = 0 mod 4, we compute by hand that

T4 =

(
−I −4E−1

4E−1 −I

)2

=

(
I 8E−1

−8E−1 I

)
mod 16.

From here, one can verify by induction that

T2s = I + 2s+1

(
0 E−1

−E−1 0

)
mod 2s+2 for s ≥ 2.
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Hence, if r is odd, then using binomial expansion, we obtain

Tr2s = I + r2s+1

(
0 E−1

−E−1 0

)
= I + 2s+1

(
0 E−1

−E−1 0

)
mod 2s+2 for s ≥ 2.

Since E−1 is invertible, this implies that the kernel of Tr2s − I over Z[1/2]/Z is
isomorphic to (Z/2s+1)2n.

Proof of Theorem 3.1. Recall that U(m,n) ∼= M1 ∩M ′2 ⊆ (Q/Z)2n. Note that
(Q/Z)2n has a unique submodule isomorphic to (Z/2)2n, so we can regard (Z/2)2n ⊆
(Q/Z)2n. In the case where m is not divisible by 4, we have

M ′2 ⊆ (Z/2)2n ⊆M1,

and therefore M1 ∩M ′2 = M ′2, and this yields the asserted formula in Theorem 3.1.
Now suppose that m is divisible by 4, and m = r2s, where r is odd. Then M ′2 is the
unique submodule of (Q/Z)2n isomorphic to (Z/2s+1)2n, while M1

∼= (
⊕n

j=1 Z/4j)⊕2.
Thus, the only possibility is that

M1 ∩M ′2 ∼=

 n⊕
j=1

Z/ gcd(4j , 2s+1)

⊕2 =

 n⊕
j=1

Z/ gcd(4j , 2m)

⊕2 .
Our proof technique in this section allows us to analyze other algebraic properties

of U(m,n). For instance, we have the following lemma, which we will use in the next
section: Let U1 = U1(m,n) be the submodule of U0(clf(m,n), Lstd,Q/Z) consisting
of functions that vanish on the vertices (j, 0), and let U2 be the submodule of functions
vanishing on the vertices (j, 1). Then we have the following.

Lemma 3.8. If m is even, then

U(m,n) = U1(m,n)⊕ U2(m,n),

where

U1(m,n) ∼= U2(m,n) ∼=

{
(Z/2)n, m ≡ 2 mod 4,⊕n

j=1 Z/ gcd(2m, 4j), m ≡ 0 mod 4.

Proof. Recall that we expressed a function u ∈ U0(clf(m,n), Lstd,Q/Z) in terms
of the two vectors a0 and a1, representing its values on the first two columns of
vertices. The submodules U1 and U2 correspond to the conditions a0 = 0 and a1 = 0,
respectively. From the proof of Lemma 3.6, we have

M1 =

{
a =

(
a1
a0

)
∈ (Q/Z)2n : nt · Fa = 0 for nt ∈ N

}
.

Then we used the change of coordinates S to write the basis for N in a simpler form.
The proof thus showed that

F−1S−1M1 = {a ∈ (Q/Z)2n : 4et1a = 0, . . . , 4netna = 0, 4etn+1a, . . . , 4
ne2na}.

The latter module clearly decomposes as the direct sum of the submodule where
a1 = 0 and the submodule where a0 = 0. However, the changes of coordinates F and
S both respect the decomposition of (Q/Z)2n into (Q/Z)n × 0n and 0n × (Q/Z)n.
Thus, M1 has the same direct sum decomposition. If m is even, then by Lemma
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Fig. 3.3. The ∂-graph clf′(5, 5).

3.7 we know that for some k, M ′2 is the unique submodule of (Q/Z)2n isomorphic to
(Z/2k)2n which is invariant under change of coordinates. Hence,

M1 ∩M ′2 = [M1 ∩ ((Z/2k)n × 0n)]⊕ [M1 ∩ (0n × (Z/2k)n)].

In other words, the submodule of a ∈ (Q/Z)2n corresponding to U0 breaks up into a
direct sum of vectors with a0 = 0 and vectors with a1 = 0. The same argument as
in the proof of Theorem 3.1 shows that each summand is isomorphic to (Z/2)n when
m ≡ 2 mod 4 and otherwise, it is

⊕n
j=1 Z/ gcd(4j , 2m).

3.4. Chain link fence variants. The family clf(m,n) is a variant of the family
of ∂-graphs described in [29]. We let clf′(m,n) be the graph from [29] described as
follows: The vertex set is

V (clf′(m,n)) = {(x, y) ∈ Z/2m× {0, . . . , n+ 1} : x+ y is even}.

In the condition “x+ y is even,” we are implicitly reducing x and y mod 2 using the
canonical maps Z/2m→ Z/2 and Z→ Z/2. The boundary vertices are

∂V (clf′(m,n)) = V (clf′(m,n)) ∩ Z/2m× {0, n+ 1}.

The edges are given by (x, y) ∼ (x + 1, y ± 1) whenever y and y ± 1 are both in
{0, . . . , n}. See Figure 3.3.

Observe that there is a ∂-graph isomorphism clf(2m,n)→ clf′(m, 2n) given by

(j, k) 7→

{
(j, k), i is even,

(j, n− k), i is odd.

Thus, we have already computed U0(clf′(m,n), Lstd,Q/Z) for even values of n in
Theorem 3.1. We will show the following.

Theorem 3.9. Denote U ′(m,n) = U0(clf′(m,n), Lstd,Q/Z). Then

U ′(m,n) ∼=

{
(Z/2)n, m odd,⊕dn/2e

j=1 Z/ gcd(4j ,m)⊕
⊕bn/2c

j=1 Z/ gcd(4j ,m), m even.

The reader should verify that this agrees with Theorem 3.1 when n is even. We
will deduce the odd case directly from Lemma 3.8 using elementary reasoning with
subgraphs.

There is also a canonical inclusion fm,n : clf′(m,n) → clf′(m,n + 1) given
by mapping a vertex in clf′(m,n) to the vertex in clf′(m,n + 1) with the same
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f3,2 f3,3

Fig. 3.4. Inclusion maps clf′(3, 2)→ clf′(3, 3)→ clf′(3, 4).

coordinates. Thus, we can think of clf′(m,n+ 1) as being obtained from clf′(m,n)
by adding another row of vertices at the top and changing the previous top row to
interior vertices (see Figure 3.4). Next, if u ∈ U0(clf′(m,n), Lstd,Q/Z), then define
(fm,n)∗u on clf′(m,n+ 1) by extending u to be zero on the top row (or row n+ 2)
of vertices in clf′(m,n+ 1). Then have the following.

Lemma 3.10. The map (fm,n)∗ defines an injection U ′(m,n)→ U ′(m,n+1). The
image of (fm,n)∗ consists of functions v which vanish on row n+ 1 in clf′(m,n+ 1).
Moreover, if v ∈ U ′(m,n + 1) vanishes on one vertex in row n + 1, then it vanishes
on all vertices in row n+ 1.

Proof. We must verify that v := (fm,n)∗u is actually in U0(clf′(m,n + 1), Lstd,
Q/Z). By construction v = 0 on the boundary rows 0 and n + 2 in clf′(m,n + 1).
We also have Lstdv = Lstdu = 0 on rows 0 through n. Because v is zero on rows n+ 1
and n+ 2 we have Lstdv = Lstdu = 0 on row n+ 1. And finally, v being zero on rows
n+ 1 and n+ 2 implies that the Laplacian is zero on row n+ 2.

The injectivity of (fm,n)∗ is obvious, and clearly the image functions all vanish
on row n. Conversely, suppose v ∈ U0(clf′(m,n + 1), Lstd,Q/Z) vanishes on the
nth row, and let u be the restriction to clf′(m,n). Since v vanishes on rows n + 1
and n + 2, the edges between these rows make no contribution to Lstdv, and hence
Lstdu = Lstdv = 0 on the nth row. This shows u ∈ U0(clf′(m,n), Lstd,Q/Z) as
desired.

For the final claim, suppose v ∈ U ′(m,n + 1) vanishes on a vertex (i, n + 1) in
row n + 1. Then the conditions v(i + 1, n + 2) = 0 and Lstdv(i + 1, n + 2) = 0 force
v(i + 2, n + 1) = 0. Similarly, v(i + 2, n + 1) = 0 implies v(i + 4, n + 1) = 0 and so
on, so that v vanishes on all of row n+ 1. (Recall there are no vertices at coordinates
(i+ 1, n+ 1), (i+ 3, n+ 1), . . . .)

As in Lemma 3.8, define

U ′1(m,n) = {u ∈ U ′(m,n) : u(0, j) = 0 for all j},
U ′2(m,n) = {u ∈ U ′(m,n) : u(1, j) = 0 for all j}.

Lemma 3.11. We have U ′(m,n) = U ′1(m,n)⊕ U ′2(m,n).

Proof. The case for even n follows from Lemma 3.8. Suppose n is odd. To show
that U ′1(m,n) ∩ U ′2(m,n) = 0, note that (fm,n)∗ maps U ′j(m,n) into U ′j(m,n + 1).
Since U ′1(m,n+ 1)∩U ′2(m,n+ 1) = 0 by the even case and since (fm,n)∗ is injective,
we deduce that U ′1(m,n) ∩ U ′2(m,n) = 0.

To show that U ′(m,n) = U ′1(m,n) + U ′2(m,n), let u ∈ U ′(m,n) and let v =
(fm,n)∗u. From the even case, we know v = v1 + v2, where v1 ∈ U ′1(m,n + 1) and
v2 ∈ U ′2(m,n+1). Now v1 vanishes on (0, n+1) by definition of U ′1(m,n+1); then the
last claim of Lemma 3.10 implies that v1 vanishes on row n+ 1. Since v vanishes on
row n+ 1 by assumption, we know v2 = v− v1 also vanishes on row n+ 1. Therefore,
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v1 and v2 are in the image of (fm,n)∗, that is, v1 = (fm,n)∗u1 and v2 = (fm,n)∗u2
for some u1, u2 ∈ U ′(m,n). Then clearly u = u1 + u2 and u1 ∈ U ′1(m,n) and
u2 ∈ U ′2(m,n).

Proof of Theorem 3.9. The case where n is even has already been handled in
Theorem 3.1. Now suppose n is odd. Note that (fm,n)∗ gives an injection U ′1(m,n)→
U ′1(m,n+1). But in fact, this is an isomorphism because any function v ∈ U ′1(m,n+1)
vanishes on (0, n+1), hence vanishes on all of row n+1, hence comes from a function
u in U ′1(m,n). A similar argument shows that U ′2(m,n) ∼= U ′2(m,n− 1). Therefore,

U ′(m,n) = U ′1(m,n)⊕ U ′2(m,n)

= U ′1(m,n+ 1)⊕ U ′2(m,n− 1)

= U1(2m, n+1
2 )⊕ U2(2m, n−12 ),

and the proof is completed by applying Lemma 3.8.

4. The categories of ∂-graphs and R-networks.

4.1. Motivation. The example of the clf networks already illustrated the use-
fulness of covering spaces (Remark 3.3) and subgraphs (Lemmas 3.10 and 3.11, proof
of Theorem 3.9). We will now describe general morphisms of R-networks, adapting
the ideas of [42, 6, 41] to ∂-graphs, as well as giving applications to spanning tree
counts and eigenvectors.

Harmonic morphisms of graphs were first defined by Urakawa [42, Definition 2.2].
Baker and Norine extended the definition to multigraphs and showed that a harmonic
morphism φ : G′ → G defines a map φ∗ from the critical group of G′ to that of G as
well as a map φ∗ from the critical group of G to that of G′ [6, section 2.3]. In other
words, the critical group (a.k.a. sandpile group or Jacobian) can be viewed either as
a covariant or as a contravariant functor from the category of graphs and harmonic
morphisms to the category of abelian groups. Special cases of Baker and Norine’s
construction were defined earlier (2002) in the undergraduate thesis of Treumann
[41].

We will construct categories of ∂-graphs and R-networks and show that Υ(G,L)
and U0(G,L,M) for fixed M are covariant functors from R-networks to R-modules,
and U(G,L,M) is a contravariant functor. It makes sense for U0(G,L,M) to be covari-
ant and U(G,L,M) to be contravariant with respect to (G,L) because U(G,L,M) ∼=
Hom(Υ(G,L),M) by Lemma 2.9 and U0(G,L,M) ∼= Tor1(Υ(G,L),M) for non-
degenerate networks by Proposition 2.11.

4.2. The category of ∂-graphs. Before defining morphisms of R-networks and
verifying the functorial properties, we must record and explain the purely combina-
torial definition of a ∂-graph morphism, based on Baker and Norine’s definition of
harmonic morphism [6, section 2.3]. For a vertex x in a ∂-graph G, recall that we use
the notation E(x) = {e ∈ E(G) : e+ = x} for the set of oriented edges exiting x.

Definition 4.1. A ∂-graph morphism f : G1 → G2 is a map f : V1 t E1 → V2 t E2

such that
(1) f maps vertices to vertices,
(2) f maps interior vertices to interior vertices,
(3) if f(e) is an oriented edge, then f(e+) = (f(e))+ and f(e−) = (f(e))− and

f(e) = f(e),
(4) if f(e) is a vertex, then f(e) = f(e) and f(e±) = f(e),
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V ◦1 V ◦2

∂V1 ∂V2

E1 E2

Fig. 4.1. Where a ∂-graph morphism is allowed to map the sets V ◦, ∂V , and E.

1

2

3

1

2

3

1

2

3

Fig. 4.2. A ∂-graph morphism. The horizontal edges are collapsed and mapped to the vertices
1, 2, 3 on the right. The vertical edges on the left graph are mapped to the vertical edges on the
right.

(5) for every x ∈ V ◦1 , the restricted map E(x)∩ f−1(E2)
f−→ E(f(x)) has constant

fiber size. In other words, it is n-to-1 for some integer n ≥ 0 (depending on
x).

Figure 4.1 shows where a ∂-graph morphism can map the edges and vertices.
The statement of condition (5) implicitly uses the fact that f restricts to a map
E(x) ∩ f−1(E2) → E(f(x)), which follows from (3). The integer n associated to a
vertex x ∈ V ◦1 in condition (5) will be called the degree of f at x and denoted by
deg(f, x). Note that (5) implies

for allx ∈ V ◦1 , for all e ∈ E(f(x)), |E(x) ∩ f−1(e)| = deg(f, x).

It will also be convenient to extend the definition of deg(f, x) to x ∈ ∂V1 by setting

deg(f, x) = max
e∈E(f(x))

|E(x) ∩ f−1(e)|.

Conditions (1), (3), and (4) say that f is like a graph homomorphism (see [23,
section 6] for background) except that it allows an edge to be collapsed to a vertex
as in Figure 4.2. In other words, if we view G1 and G2 as cell complexes, then f is a
continuous cellular map.

Condition (5) says that f restricts to an n-fold covering of the neighborhood E(x)
of x onto the neighborhood E(f(x)) of f(x), after ignoring collapsed edges (note that
ignoring collapsed edges is exactly the effect of the taking the intersection of E(x)
with f−1(E2) in (5)). For examples, see Figures 4.3 and 4.4. The next lemma is the
first step in establishing our functoriality properties.

Lemma 4.2. ∂-graphs form a category. Moreover, if f : G1 → G2 and g : G2 →
G3 are ∂-graph morphisms, then

deg(g ◦ f, x) = deg(f, x) deg(g, f(x)) for all x ∈ V ◦1 ,
deg(g ◦ f, x) ≤ deg(f, x) deg(g, f(x)) for all x ∈ ∂V1.

Proof. To verify the category axioms, it suffices to show that if f : G1 → G2 and
g : G2 → G3 are ∂-graph morphisms, then so is g◦f . Clearly, (1) and (2) are preserved
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1

2 3
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12

3

Fig. 4.3. A ∂-graph morphism. The numbers show where each vertex is mapped.

1

2

3

2

1

2

3

Fig. 4.4. A ∂-graph morphism. The horizontal edge is collapsed into the vertex 2 on the right,
while the slanted edges on the left map to the vertical edges on the right.

by composition. To check g ◦ f satisfies (3), note that if g ◦ f(e) is an oriented edge,
then f(e) must be an oriented edge by (1), and hence we can apply (3) to f at the
edge e and (3) to g at the edge f(e).

To check (4), suppose g ◦ f(e) is a vertex. If f(e) is a vertex, then apply (4) to f .
If f(e) is an edge, then apply (3) to f and (4) to g.

To check (5), suppose x ∈ V ◦1 and e ∈ E(g ◦ f(x)). Any element of f−1(g−1(e))
must be mapped into E(f(x)) by f , and thus

E(x) ∩ f−1(g−1(e)) = te′∈E(f(x))∩g−1(e)E(x) ∩ f−1(e′).

Using the fact that f(x) ∈ V ◦2 , we see that this is a disjoint union of deg(g, f(x)) sets
of size deg(f, x). This implies that

|E(x) ∩ f−1(g−1(e))| = deg(f, x) deg(g, f(x)) for all e ∈ E(g ◦ f(x)),

and hence g ◦ f satisfies (5) and hence is a ∂-graph morphism.
Moreover, the last computation showed that deg(g ◦ f, x) = deg(f, x) deg(g, f(x))

and a similar argument shows that deg(g ◦ f, x) ≤ deg(f, x) deg(g, f(x)) for
x ∈ ∂V1.

As in [6, 42, 36], we can think of ∂-graph morphisms as a discrete analogue
of holomorphic maps between Riemann surfaces with boundary. The first, perhaps
trivial, analogy is that both ∂-graph morphisms and holomorphic functions are closed
under composition. Moreover, in the next section, we will show that if f : G1 → G2

is a ∂-graph morphism and u is harmonic on G2, then u ◦ f is harmonic on G1.
Just as with Riemann surfaces, the simplest type of ∂-graph morphism is a cover-

ing map, which completely preserves local structure. In the discrete setting, we define
covering maps as follows. Note that this agrees with topological definition if we view
∂-graphs as a cell complexes and forget the distinction between interior and boundary
vertices.

Definition 4.3. A covering map is a ∂-graph morphism f : G̃ → G such that f
defines a surjection V (G̃)tE(G̃)→ V (G)tE(G), f maps interior vertices to interior
vertices, f maps boundary vertices to boundary vertices, f maps edges to edges, and
the restricted map E(x)→ E(f(x)) is a bijection for every x ∈ Ṽ .
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We have already seen a covering map in Remark 3.3. Moreover, the standard
construction of the bipartite double cover for a graph easily adapts to ∂-graphs. We
shall say more about covering spaces in section 10.

Another important type of morphism is the inclusion of sub-∂-graphs. We have
already used sub-∂-graphs in section 3.4. Later, in section 5, we will consider restrict-
ing harmonic functions to sub-∂-graphs and extending them from sub-∂-graphs using
a discrete analogue of harmonic continuation. We now record the precise definition
of a sub-∂-graph for future use.

Definition 4.4. Assume that G1 and G2 are ∂-graphs, such that (V1, E1) is a
subgraph of (V2, E2). Then we say G1 is a sub-∂-graph of G2 if the inclusion map
G1 → G2 is a ∂-graph morphism. One can verify from Definition 4.1 that a subgraph
G1 will be a sub-∂-graph if and only if x ∈ V ◦1 implies that x ∈ V ◦2 and EG1

(x) =
EG2

(x).

Like a holomorphic function, a ∂-graph morphism f : G1 → G2 may exhibit
ramification when a star E(x) in G1 is an n-fold cover of a star {e : e+ = f(x)}
in G2 for n > 1. For example, see Figure 4.3. This is a discrete model of the
behavior of the map z 7→ zn in a neighborhood of the origin in C. The formula
deg(g ◦ f, x) = deg(f, x) deg(g, f(x)) also mimics the way that local degrees of holo-
morphic maps are multiplicative under composition. The behavior of a ∂-graph mor-
phism is unconstrained by condition (5) at the boundary, just as an analytic function
on a Riemann surface need not be n-to-1 in the neighborhood of a boundary point.

Recall that for compact connected Riemann surfaces without boundary, every
nonconstant holomorphic map is surjective as a consequence of the open mapping
theorem. Now we will prove an analogous statement in the discrete case, which applies
even to infinite ∂-graphs. We will view graphs without boundary as the subclass of ∂-
graphs with no boundary vertices. Continuing the terminology of [42, 6], we will refer
to ∂-graph morphisms of boundary graphs without boundary as harmonic morphisms.
An example of such a morphism is shown in [6, Figure 1]. An alternative proof of the
following proposition can also be found in [6, Lemmas 2.4 and 2.7].

Proposition 4.5. Let f : G1 → G2 be a harmonic morphism of nonempty con-
nected graphs without boundary. Either f maps V1 tE1 to a single vertex x of G2 or
f is a surjection V1 t E1 → V2 t E2.

Proof. Let A = {x ∈ f(V1) : deg(f, y) > 0 for some y ∈ f−1(x)}. We claim that
if x ∈ A, then all neighbors of x are also in A. Suppose x ∈ A and x′ is joined to x
by an edge e. Since x ∈ A, there exists y ∈ f−1(x) with deg(f, y) > 0. This implies
that y has some edge ẽ which maps to e, so y has some neighbor y′ which maps to x′.
Since the edge ẽ incident to y′ maps to an edge in G2, we must have deg(f, y′) > 0.
Therefore, x′ ∈ A.

Since G2 is connected, either A = V2 or A = ∅. In the first case, f must be
surjective onto V2, and then by definition of A and deg(f, y), we deduce that f is
surjective onto E2. In the second case, we have deg(f, y) = 0 for all y ∈ V1, which
implies that all edges in G2 are collapsed to vertices. Then since G2 is connected, f
must be constant.

Though ∂-graph morphisms are much like holomorphic maps, the ability of ∂-
graph morphisms to collapse an edge into a vertex seems to have no direct analogue in
complex analysis. In a neighborhood of a vertex x where deg(f, x) = 1 and some edges
in E(x) are collapsed, a ∂-graph f behaves more like an orthogonal projection (recall
that that if f : Rm → Rn is an orthogonal projection and u : Rn → R is harmonic,
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then u ◦ f is harmonic). A more precise analogy is between the projection maps
associated to a product of Riemannian manifolds and the projection maps associated
to a box product of ∂-graphs (also known as the Cartesian product), which is defined
as follows.

Let G1 and G2 be ∂-graphs. Then we define the box product G = G1�G2 by

V = V1 × V2, E = E1 × V2 ∪ V1 × E2, V ◦ = V ◦1 × V ◦2 .

Then if (e, x) ∈ E1 × V2, we define (e, x) = (e, x), (e, x)+ = (e+, x), and (e, x)− =
(e−, x) and make a similar definition for (x, e) ∈ V1 × V2. In particular, two vertices
(x, y) and (x′, y′) are adjacent if x = x′ and y ∼ y′ or if x ∼ x′ and y = y′. Then the
obvious projection map f1 : G→ G1 is a ∂-graph morphism. Note that f1 has degree
1 at each vertex and collapses all edges in V1 × E2 to vertices.

In general, the local behavior of a ∂-graph morphism at an interior vertex com-
bines ramification and collapsing, that is, it combines the behavior of branched cov-
ering maps and projections. What is unique about the discrete setting is that f may
behave like a holomorphic map R2 → R2 near one vertex and behave like a projec-
tion map R3 → R2 at another vertex; this cannot happen for manifolds because the
dimension does not vary from point to point.

4.3. The category of R-networks. Recall that an R-network is given by a
pair (G,L), where L is given by a weight function w : E → R and a diagonal term
d : V → R.

Definition 4.6. An R-network morphism f : (G1, L1) → (G2, L2) is given by a
∂-graph morphism f : G1 → G2 satisfying

w1(e) = w2(f(e)) for every e ∈ f−1(E2)

and

d1(x) = deg(f, x)d2(f(x)) for every x ∈ V ◦1 .

It is straightforward to verify that R-networks form a category, using the fact
that ∂-graphs form a category and deg(g◦f, x) = deg(f, x) deg(g, f(x)) for an interior
vertex x. We denote this category by R-net.

Remark 4.7. Note that the second condition of Definition 4.6 is trivially satisfied
in the case where dj = 0. In particular, if f : G1 → G2 is a ∂-graph morphism, then f
automatically defines a Z-network morphism (G1, Lstd,1) → (G2, Lstd,2), where Lstd

is the standard Laplacian with edge weights 1. Thus, G 7→ (G,Lstd) is a functor from
∂-graphs to Z-networks.

The functoriality properties we will prove rely on the following observation.

Lemma 4.8. Let f : (G1, L1) → (G2, L2) be an R-network morphism. Note that
f extends linearly to a map RV1 → RV2. If x ∈ V ◦1 , then

f(L1x) = deg(f, x)L2(f(x)).

Proof. Note that

f(L1x) = d1(x)f(x) +
∑
e∈E(x)

w1(e)(f(x)− f(e−)).
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By Definition 4.6, d1(x) = deg(f, x)d2(x). Moreover, by Definition 4.1, each e ∈ E(x)
will map either to f(x) or to some e′ ∈ E(f(x)). Thus, the sum over the edges becomes∑
e∈E(x)∩f−1(f(x))

w1(e)(f(x)− f(e−)) +
∑

e′∈E(f(x))

∑
e∈E(x)∩f−1(e′)

w1(e)(f(x)− f(e−)).

The first term vanishes since if e is collapsed into x, then f(e−) = f(x). In the second
term, note w1(e) = w2(f(e)) by Definition 4.6 and the number of terms corresponding
to each e′ is deg(f, x). Hence,∑

e∈E(x)

w1(e)(f(x)− f(e−)) =
∑

e′∈E(f(x))

∑
e∈E(x)∩f−1(e′)

w2(e′)(f(x)− f(e−))

=
∑

e′∈E(f(x))

deg(f, x)w2(e′)(f(x)− e′−).

Therefore,

f(L1x) = deg(f, x)d2(f(x))f(x) + deg(f, x)
∑

e′∈E(f(x))

w2(e′)(f(x)− e′−)

= deg(f, x)L2(f(x)).

Now we can establish the promised functoriality properties. We remark that
special cases of Lemma 4.9 were proved in [41] and the case of Lemma 4.10 where
R = Z and L = Lstd was proved in [6, Proposition 2.8].

Lemma 4.9. The map (G,L) 7→ Υ(G,L) is a functor R-net → R-mod, where
the definition on morphisms is as follows: If f : (G1, L1)→ (G2, L2) is an R-network
morphism, then Υf is given by

Υf : Υ(G1, L1)→ Υ(G2, L2) : x+ L(RV ◦1 ) 7→ f(x) + L(RV ◦2 ).

Proof. Let us verify that the map Υf is well-defined. Recall

Υ(G,L) = RV (G)/L(RV ◦(G)).

The map f : (G1, L1) → (G2, L2) defines a map f : RV1 → RV2. By Lemma 4.8,
f maps L1(RV ◦1 ) into L2(RV ◦2 ). This implies f yields a well-defined map on the
quotient. Checking that Υ(g ◦ f) = Υg ◦Υf is straightforward.

Lemma 4.10. The map ((G,L),M) 7→ U(G,L,M) is a functor R-netop×
R-mod → R-mod, where the definition on morphisms is given as follows: If
f : (G1, L1)→ (G2, L2) and φ : M →M ′ is an R-module morphism, then we have

U(f, φ) : U(G2, L2,M)→ U(G1, L1,M
′) : u 7→ φ ◦ u ◦ f.

The isomorphism U(G,L,M) ∼= HomR(Υ(G,L),M) given by Lemma 2.9 is natural
in ((G,L),M).

Proof. To check that the map U(f, φ) actually maps into U(G1, L1,M
′), let u ∈

U(G2, L2,M). If x ∈ V ◦1 , then f(x) ∈ V ◦2 , and by Lemma 4.8, we have

L1(φ ◦ u ◦ f)(x) = φ ◦ u ◦ f(L1x) = deg(f, x)φ ◦ u(L2f(x)) = 0.

Functoriality is straightforward to check, and the naturality of the isomorphism
U(G,L,M) ∼= HomR(Υ(G,L),M) is checked easliy from the proof of Lemma 2.9.
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Lemma 4.11. The map ((G,L),M) 7→ U0(G,L,M) is a functor R-net×R-mod→
R-mod, where the definition on morphisms is given as follows: If f : (G1, L1) →
(G2, L2) and φ : M →M ′, then we have

[U0(f, φ)u](y) =
∑

x∈f−1(y)∩V1

deg(f, x)φ ◦ u(x).

The surjection U0(G,L,M)→ TorR1 (Υ(G,L),M) given by Proposition 2.11 is natural
in ((G,L),M).

Proof. As in the proof of Proposition 2.11, for an R-network (G,L), we can view
RV ◦ ⊗M as the module of finitely supported functions u : V ◦ → M by the identifi-
cation

u↔
∑
x∈V ◦

x⊗ u(x).

Then

U0(G,L,M) = ker(L⊗ id : RV ◦ ⊗M → RV ⊗M).

By Lemma 4.8, if f : (G1, L1)→ (G2, L2), then the left diagram below commutes and
hence the right diagram below commutes:

RV ◦1 RV1 RV ◦1 ⊗M RV1 ⊗M

RV ◦2 RV2 RV ◦2 ⊗M ′ RV2 ⊗M ′

L1

deg(f,·)f f

L1

deg(f,·)f⊗φ f⊗φ

L2 L2

In the diagram at right, the kernels of the horizontal maps are U0(G1, L1,M) and
U0(G2, L2,M

′), respectively, so we obtain a map U0(G1, L1,M) → U0(G2, L2,M
′)

satisfying ∑
x∈V ◦1

x⊗ u(x) 7→
∑
x∈V ◦1

deg(f, x)f(x)⊗ φ(u(x)).

The asserted formula follows from grouping the terms in the right-hand sum by the
value of f(x). Again, functoriality of the construction is straightforward to check, and
so is the naturality of the transformation in Proposition 2.11.

4.4. Applications of functoriality. We now give some immediate applications
of functoriality to the critical group and the characteristic polynomial of L. The
following application to the critical group and spanning trees is a generalization of
[7, Theorem 5.7] and [41, Proposition 19 and Corollary 20]. We do not know of a
combinatorial proof of Corollary 4.13 below and suggest it as a question for future
research.

Proposition 4.12. Viewed as the torsion submodule of ΥZ(G,Lstd), the critical
group is a covariant functor from finite connected graphs to Z-modules, where the
morphisms between graphs are the harmonic morphisms. If f : G1 → G2 is a non-
constant harmonic morphism between connected graphs, then Crit(f) : Crit(G1) →
Crit(G2) is surjective, and if f is constant, then it is zero.

Proof. Note that f induces a map ΥZf : ΥZ(G1, Lstd,1) → ΥZ(G2, Lstd,2). Also,
recall from Proposition 2.22 that Crit(Gj) is the torsion part of ΥZ(Gj , Lstd,j), and
for each vertex x ∈ V1, we have internal direct sums
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ΥZ(G1, Lstd,1) = Crit(G1)⊕ Zx,
ΥZ(G2, Lstd,2) = Crit(G2)⊕ Zf(x).

The map Υf maps the first summand into the first summand and the second summand
into the second summand. In particular, f restricts to a map Crit(f) : Crit(G1) →
Crit(G2).

If f is nonconstant, then it is surjective by Proposition 4.5. In this case, f induces
a surjection RV1 → RV2, and hence by passing to the quotient, Υf : ΥZ(G1, Lstd,1)→
ΥZ(G2, Lstd,2) is surjective. It follows that in the direct sum decomposition above,
Υf must be surjective on each summand. On the other hand, if f is constant, then
f maps every vertex to f(x) and hence the image of Υf is completely contained in
Zf(x). Thus, Υf must map Crit(G1) to zero.

Corollary 4.13. Suppose f : G1 → G2 is a nonconstant harmonic morphism of
graphs. Then the number of spanning trees on G2 divides the number of spanning
trees on G1.

Proof. It is well-known that the number of spanning trees τ(Gj) equals the size of
the critical group Crit(Gj); see, for instance, [24, section 3]. Since Crit(f) is surjective,
the order of Crit(G2) divides the order of Crit(G1).

Proposition 4.14. Suppose f : G1 → G2 is a nonconstant harmonic morphism
of connected graphs which satisfies deg(f, x) = n for all x ∈ V1. Then f induces a
C[z]-network morphism

f∗ : (G1, nzI − Lstd,1)→ (G2, zI − Lstd,2).

Moreover the induced map ΥC[z]f∗ is surjective. In particular, if G1 and G2 are finite,
then the characteristic polynomials of the standard Laplacians for the two graphs are
related by

det(zI − Lstd,2)|det(nzI − Lstd,1).

Proof. Observe that f defines a C[z]-network morphism (G1, nzI − Lstd,1) →
(G2, zI −Lstd,2); the second condition of Definition 4.6 holds because for L1 = nzI −
Lstd,1 and L2 = zI − Lstd,2, we have

d1(x) = nz = deg(f, x)z = deg(f, x) · d2(f(x)).

By Proposition 4.5, f is surjective on the vertex and edge sets. By Lemma 4.9, we
have a surjective C[z]-module morphism

ΥC[z](G1, nzI − Lstd,1)→ ΥC[z](G2, zI − Lstd,2),

which by application of the Hom functor induces an injective map

U(G2, zI − Lstd,2,C[z]/(z − λ))→ U(G1, nzI − Lstd,1,C[z]/(z − λ)).

By similar reasoning to Example 2.16, this means that λ-eigenvectors of G2 pull back
to nλ-eigenvectors of G1. Thus, if λ is an eigenvalue of Lstd,2, then nλ is also an
eigenvalue of Lstd,1 with the same or greater multiplicity. This implies det(zI −
Lstd,2)|det(nzI − Lstd,1).

Remark 4.15. In addition, Lemma 4.11 yields a map

U0(G1, nzI − Lstd,1,C[z]/(z − λ))→ U0(G2, zI − Lstd,2,C[z]/(z − λ)),
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which implies that nλ-eigenvectors of Lstd,1 push forward to λ-eigenvectors of Lstd,2.
In particular, if nλ is an eigenvalue of G1 but λ is not an eigenvalue for G2, then
any nλ-eigenvector of G1 will push forward to zero; in other words, the values on
each fiber will add up to zero. These results on the characteristic polynomial and
eigenvectors generalize in a straightforward way to weighted graphs.

5. Layer-stripping and harmonic continuation.

5.1. Layerable extensions. Based on the technique of layer-stripping from the
electrical inverse problem (see section 1.1 and [15, 18, 13, 26]), we shall now describe
three operations (simple layerable extensions), which add a vertex or an edge onto
the boundary of a ∂-graph. Individually, these modifications are simple enough that
their effect on Υ, U , and U0 is easy to understand, but when applied in sequence,
they provide nontrivial information about our algebraic invariants. We will show, for
instance, that if (G′, L′) is obtained from (G,L) by a sequence of simple layerable
extensions, then any harmonic function on (G,L) extends to a harmonic function on
(G′, L′). For simplicity, we focus on the case of finite ∂-graphs first and then consider
infinite ∂-graphs in section 5.6.

Definition 5.1. An isolated boundary vertex x of a ∂-graph is a boundary vertex
with no neighbors incident to it. We say G′ is obtained from G by adjoining the
isolated boundary vertex x if x is an isolated boundary vertex in G′ and

V (G′) = V (G) t {x}, E(G′) = E(G), V ◦(G′) = V ◦(G).

Equivalently, we say that G is obtained from G′ by deleting the isolated boundary
vertex x. See Figure 5.1 for an example.

Definition 5.2. A boundary spike e of a ∂-graph is an edge e such that one
endpoint e− is an interior vertex and the other e+ is a boundary vertex with no other
edges incident to it. We say G′ is obtained from G by adjoining the boundary spike e
if e is a boundary spike in G′ and we have

V (G′) = V (G) t {e+}, E(G′) = E(G) t {e, e}, V ◦(G′) = V ◦(G) t {e−}.

Equivalently, we say that G is obtained from G′ by contracting the boundary spike e.
See Figure 5.2 for an example.

Definition 5.3. A boundary edge e of a ∂-graph is an edge e such that both
endpoints are boundary vertices. We say that G′ is obtained from G by adjoining a
boundary edge e if e is a boundary edge in G′ and

V (G′) = V (G), E(G′) = E(G) t {e, e}, V ◦(G′) = V ◦(G).

Equivalently, we say that G is obtained from G′ by deleting the boundary edge e. See
Figure 5.3 for an example.

G G′
x

Fig. 5.1. Adjoining or deleting an isolated boundary vertex x.
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G G′

e+ e−

e

Fig. 5.2. Adjoining or contracting a boundary spike e.

G G′

e−

e+

e

Fig. 5.3. Adjoining or deleting a boundary edge e.

Definition 5.4. If G′ is obtained from G by adjoining an isolated boundary ver-
tex, boundary spike, or boundary edge, then we say that G′ is a simple layerable ex-
tension of G. We will equivalently say that G is obtained from G′ by a layer-stripping
operation.

Observation 5.5. If G′ is a simple layerable extension of G, then G is a sub-∂-
graph of G′, as one can check by straightforward casework.

Definition 5.6. We say (G′, L′) is obtained from (G,L) by adjoining an isolated
boundary vertex, boundary spike, or boundary edge if G′ is obtained from G by the
corresponding operation and in addition w′|E(G) = w and d′|V (G) = d. (Note that
given the geometric setup, w′|E(G) = w and d′|V (G) = d is a necessary and sufficient
condition to make the inclusion (G,L)→ (G′, L′) an R-network morphism.)

Lemma 5.7. Let (G′, L′) be an R×-network. If (G′, L′) is obtained from (G,L)
by adjoining a boundary spike or boundary edge, then the induced maps Υ(G,L) →
Υ(G′, L′), U(G,L,M)→ U(G′, L′,M) are isomorphisms.

If (G′, L′) is obtained from (G,L) by adjoining an isolated boundary vertex x,
then these maps furnish isomorphisms

Υ(G′, L′) ∼= Υ(G,L)⊕Rx

and

U(G′, L′,M) ∼= U(G,L,M)×M{x}.

Proof. Suppose G′ is obtained from G by adjoining an isolated boundary vertex
x. Then we have

RV (G′) = RV (G)⊕Rx,
L′(RV ◦(G′)) = L(RV ◦(G)) ⊆ RV (G).

Taking the quotient of the top row by the bottom row yields Υ(G′, L′) ∼= Υ(G,L)⊕Rx.
Then applying Hom(−,M) yields the desired equation for U(−,M).

Suppose G′ is obtained from G by adjoining a boundary edge. Then V (G′) =
V (G) and V ◦(G′) = V ◦(G). Since the endpoints of e are boundary vertices, the two
Laplacians L′ and L agree on RV ◦(G). Hence, Υ(G′, L′) = Υ(G,L), and application
of Hom(−,M) yields the corresponding statement for U(−,M).
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Finally, suppose G′ is obtained from G by adjoining a boundary spike e with
x = e+ ∈ ∂V (G′) and y = e− ∈ V ◦(G′). Then consider the commutative diagram:

0 RV ◦(G) RV ◦(G′) Ry 0

0 RV (G) RV (G′) Rx 0,

L L′ ψ

where the horizontal arrows are given by the direct sum decompositions induced by
V ◦(G′) = V ◦(G)t{y} and V (G′) = V (G)t{x}, and the vertical arrow ψ : Ry → Rx
is given by y 7→ −w′(e)x. Commutativity of the left square follows from the fact that
w′|G = w and d′|G = d. To check commutativity of the right square, start with an
arbitrary element of RV ◦(G′) written in the form z + ry, where z ∈ RV ◦(G) and
r ∈ R. Going right and then down produces −rw′(e)x. In the other direction, going
down from RV ◦(G′) to RV (G′) yields

L′(z + ry) = L′z + r

d′(y)y +
∑

e′:e′+=y

w′(e′)(y − e−)

 ∈ RV (G)− rw′(e)x,

and then following the diagram right to Rx yields −rw′(e)x.
The rows are clearly exact. Hence, the snake lemma yields an exact sequence

· · · → kerψ → Υ(G,L)→ Υ(G′, L′)→ cokerψ → 0.

Since ψ is an isomorphism, this shows that Υ(G,L) → Υ(G′, L′) is an isomorphism,
and application of Hom(−,M) yields the corresponding statement for U(−,M) by
Lemma 2.9.

Lemma 5.8. If an R×-network (G′, L′) is obtained from (G,L) by a simple layer-
able extension, then the induced map U0(G,L,M)→ U0(G′, L′,M) is an isomorphism.

Proof. Since (G,L) is a subnetwork of (G′, L′), the map U0(G,L,M) →
U0(G′, L′,M) defined by Lemma 4.11 extends a function u on G to a function u′

on G′ by setting u′|V (G′)\V (G) = 0. This map is clearly injective. We prove surjectiv-
ity by cases.

Suppose G′ is obtained from G by adjoining an isolated boundary vertex. If u′ ∈
U0(G′, L′,M), then clearly u′(x) = 0. Moreover, L′u′|V (G) = L(u′|V (G)). Thus, u′

restricts to a function in u ∈ U0(G,L,M), and u is mapped to u′ by the extension map.
Suppose G′ is obtained from G by adjoining a boundary edge e. Recall V (G′) =

V (G), so functions on G′ and functions on G are equivalent. If u ∈ U0(G′, L′,M),
then u(e+) = u(e−) = 0 and hence Lu = L′u. Thus, u ∈ U0(G′, L′,M) and u is
mapped to itself by the extension map.

Suppose G′ is obtained from G by adjoining a boundary spike e with boundary
endpoint e+ = x and interior endpoint e− = y. Suppose that u′ ∈ U0(G′, L′,M) and
let u = u′|V (G). Note that

0 = L′u′(x) = d(x)u′(x) + w(e)(u′(x)− u′(y)) = 0 + w(e)(0− u(y)).

Since w(e) is a unit in R, this implies u(y) = 0. Moreover, we have

0 = L′u′(y) = Lu(y) + w(e)(u′(y)− u′(x)) = Lu(y).

Thus, u(y) = Lu(y) = 0, which shows u ∈ U0(G,L,M). Thus, u′ is in the image of
the extension map.
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G G′

Fig. 5.4. A layerable filtration from a ∂-graph G to a layerable extension G′ of G.

Remark 5.9. In Lemmas 5.7 and 5.8, the only place where we used the fact that
w(e) ∈ R× was for the case of a boundary spike. When w(e) is not a unit in R, the
snake lemma still yields an exact sequence relating Υ(G,L) and Υ(G′, L′). Though we
will focus on the case of unit edge weights in this paper, applying layerable filtrations
in the general case seems like a promising avenue for future research.

Now we will describe layerable extensions formed from a sequence of simple lay-
erable extensions.

Definition 5.10. We say that G′ is a finite layerable extension of G if there
exists a finite of sequence of sub-∂-graphs of G′

G = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G′

such that Gj is a simple layerable extension of Gj−1. We call {Gj} a layerable filtra-
tion from G to G′. We say that Gj is layerable if it is a layerable extension of ∅. See
Figure 5.4 for an example.

Proposition 5.11. Suppose that a finite R×-network (G′, L′) is a layerable ex-
tension of (G,L) through the filtration {(Gj , Lj)}nj=0. Let S ⊆ V (G′) be the set of
vertices which are adjoined as isolated boundary vertices at some step of the filtration.
Then the inclusion map (G,L)→ (G′, L′) induces isomorphisms

Υ(G′, L′) ∼= Υ(G,L)⊕RS,
U(G′, L′,M) ∼= U(G,L,M)×MS ,

U0(G′, L′,M) ∼= U0(G,L,M).

Proof. In the first claim, the map Υ(G,L) → Υ(G′, L′) is given by functoriality
of Υ and the map RS → Υ(G′, L′) is given by the composition RS → RV (G′) →
Υ(G′, L′). Let Sj = S ∩ V (Gj). The three cases of Lemma 5.7 show that the map

Υ(Gj , Lj)⊕R(Sj+1 \ Sj)→ Υ(Gj+1, Lj+1)

is an isomorphism (in the case of adjoining a boundary spike or boundary edge,
Sj+1 \ Sj = ∅). By induction, this implies that

Υ(G,L)⊕RSn → Υ(Gn, Ln) is an isomorphism,

which completes the proof because (Gn, Ln) = (G′, L′).
The second claim follows by application of the functor HomR(−,M) to the first

claim, or alternatively by inductive application of the second isomorphism in Lemma
5.7. The third claim follows by inductive application of Lemma 5.8.

The claim U(G′, L′,M) ∼= U(G,L,M)×MS in Proposition 5.11 has the following
interpretation in terms of harmonic extensions: Any harmonic function u on (G,L)
extends to a harmonic function u′ on (G′, L′). For any φ ∈ MS , there is a unique
harmonic extension u′ of u such that u′|S = φ. We can see from the inductive
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application of Lemma 5.7 that the extension u′ can be constructed using step-by-
step extensions from (Gj , Lj) to (Gj+1, Lj+1). In other words, a layerable filtration
provides a geometric model for discrete harmonic continuation, loosely analogous to
the sequences of domains used for harmonic continuation in complex analysis.

The special case of Proposition 5.11 where G = ∅ deserves special comment.

Proposition 5.12. Suppose that (G′, L′) is a layerable R×-network, and let
{(Gj , Lj)} be a layerable filtration from ∅ to (G′, L′). Let S be the set of vertices
which are adjoined as isolated boundary vertices at some step of the filtration.

(1) Υ(G′, L′) is a free R-module and a basis is given by S.
(2) For every R-module M , for every φ ∈MS, there is a unique harmonic func-

tion u such that u|S = φ.
(3) The network (G′, L′) is nondegenerate and U0(G,L,M) = 0 for every R-

module M .

Remark 5.13. If the network in Proposition 5.12 is finite, then |S| = |∂V | (one
verifies this by induction after observing that adjoining a boundary spike or boundary
edge does not change |∂V |). Thus, Υ(G,L) is a free R-module of rank |∂V |.

Remark 5.14. If we unwind the proof leading up to Proposition 5.12(3), it does
in fact boil down to the intuitive argument given in section 1.1 that if we assume
u is harmonic and has zero boundary data, then we can inductively show that u =
0 further and further inside the network using harmonic continuation. Indeed, if
(G0, L0) ⊆ (G1, L1) ⊆ . . . (Gn, Ln) = (G,L) is a layerable filtration, then Lemma 5.8
shows

(u|∂Vj+1
, Lj+1u|∂Vj+1

) = 0 =⇒ (u|∂Vj
, Lju|∂Vj

) = 0.

Inductive application of this statement shows that zero potential and current condi-
tions propagate inward from ∂Vn to ∂Vn−1 and so forth to ∂V0. Since all vertices are
contained in some ∂Vj , this shows u ≡ 0. By linearity, the same argument shows that
a harmonic function is uniquely determined by its boundary data and the values can
be deduced using harmonic continuation from the boundary inward.

5.2. Algebraic characterization of layerability. We are now ready to give
our algebraic characterization of layerability. We begin by considering networks over
a field and then apply our algebraic machinery to state several other equivalent con-
ditions.

Lemma 5.15. Let G be a finite ∂-graph and let F be a field with at least three
elements. Then G is layerable if and only if every F×-network on the ∂-graph G is
nondegenerate.

Proof. If G is layerable and (G,L) is an F×-network on G, then (G,L) is non-
degenerate by Proposition 5.12(3).

To prove the converse, suppose G is not layerable. Let G′ be a minimal non-
layerable sub-∂-graph of G. Since G′ is minimal, it cannot have a boundary spike,
boundary edge, or isolated boundary vertex, since performing a layer-stripping op-
eration on G′ would preserve layerability. Hence, every boundary vertex in G′ must
have multiple edges incident to it, and all its neighbors are interior vertices. In par-
ticular, E(x) and E(y) are disjoint for distinct vertices x, y ∈ ∂V (G′). Since F has at
least three elements, we can write zero as the sum of n nonzero elements for every
n ∈ N. Thus, we can choose w′ : E(G′)→ F× such that

∑
e∈E(x) w

′(e) = 0 for every

x ∈ ∂V (G′).
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Let u : V (G′) → F be given by u = 0 on ∂V (G′) and u = 1 on V ◦(G′). Define
d : V (G′)→ F such that

d′(x) = −
∑
e∈E(x)

e−∈∂V (G′)

w′(e).

Then note that

L′u(x) = d′(x) +
∑
e∈E(x)

e−∈∂V (G′)

w′(e) = 0 for x ∈ V ◦(G′),

while

L′u(x) = −
∑
e∈E(x)

w′(e) = 0 for x ∈ ∂V (G′).

Therefore, u ∈ U0(G′, L′, F ) and clearly u is not identically zero.
Let w and d be any extension of w′ and d′ to G. Then (G′, L′) → (G,L) is an

injective F×-network morphism and hence extension by zero defines an injective map
U0(G′, L′)→ U0(G,L) (as a special case of Lemma 4.11). Thus, U0(G,L) is nonzero,
so (G,L) is degenerate as desired.

Next, we state some other equivalent algebraic conditions. In (4) below, R∗(G,F )
and L∗(G,F ) are the ring and generalized Laplacian defined in Definition 2.17. The
ring R∗ is the polynomial algebra F (t±1e , e ∈ E; tx, x ∈ V ), where te = te, and L∗ is
given by setting w(e) = te and d(x) = tx.

Theorem 5.16. Let G be a finite ∂-graph. The following are equivalent:
(1) G is layerable.
(2) For every ring R, every R×-network on G is nondegenerate.
(3) For every ring R, for every non-degenerate R×-network (G,L) on the ∂-graph

G, Υ(G,L) is a free R-module.
(4) There exists a field F with at least three elements such that Υ(G,L∗(G,F ))

is a flat R∗(G,F )-module.
(5) There exists a field F with at least three elements such that every F×-network

on G is nondegenerate.

Proof. We prove the implications in two cycles. First, (1) =⇒ (2) by Proposition
5.12; (2) =⇒ (5) trivially; and (5) =⇒ (1) by Lemma 5.15.

Next, observe (1) =⇒ (3) by Proposition 5.12; (3) =⇒ (4) because (G,L∗)
is nondegenerate (Proposition 2.18) and because free modules are automatically flat;
(4) =⇒ (5) was proved in Proposition 2.18; and we already know (5) =⇒ (1).

Remark 5.17. Based on the statement alone, one can come up with several other
equivalent conditions: For instance, “Υ(G,L) is flat for every nondegenerate R×-
network on G for every ring R,” or “every F×-network on G is nondegenerate for
every field F .”

5.3. Transformations of harmonic boundary data. We now describe how
adjoining a boundary spike or boundary edge affects the boundary potential and
current data of harmonic functions. The simple coordinate system given here will be
used later in Theorem 5.23, which gives an algorithm for simplifying computation of
U0(G,L,M). The discussion will also relate layer-stripping to symplectic matrices as
in [30], [27, section 12].
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For a harmonic function u ∈ U(G,L,M), the term boundary data will refer
to (u|∂V , Lu|∂V ). If (G′, L′) is a simple layerable extension of (G,L) and if u ∈
U(G,L,M) extends to u′ ∈ U(G′, L′,M ′), then it is easy to explicitly compute the
boundary data of u′ from that of u.

Adjoining a boundary spike. Suppose G′ is obtained from G by adjoining
a boundary spike e with e+ ∈ ∂V (G′) and e− ∈ V ◦(G′), and assume w(e) = w ∈
R× and d(e+) = d ∈ R. For explicitness, we will index the boundary vertices of
each ∂-graph by integers: Let [m] denote {1, . . . ,m}, and let ` : [m] → ∂V (G) and
`′ : [m] → ∂V (G′) be bijections labeling the vertices. We assume the two labelings
are consistent, meaning that e− ∈ ∂V (G) and e+ ∈ ∂V (G′) have the same index,
and every x ∈ ∂V (G) ∩ ∂V (G′) has the same index with respect to the two different
labelings.

Let j be the index of e− ∈ ∂V (G) and e+ ∈ ∂V (G′), so that e+ = `′(j) and
e− = `(j). Let Ep,q denote the matrix with a 1 in the (p, q) entry and zeros elsewhere.
Then we claim that(

u′ ◦ `′
L′u′ ◦ `′

)
=

(
I w−1Ej,j

dEj,j I + dw−1Ej,j

)(
u ◦ `
Lu ◦ `

)
,

where the matrix blocks are m×m, and u ◦ ` is viewed as a vector in Mm. Note that
the matrix has a simpler form when d = 0. To verify the matrix formula, note that

0 = L′u′(e−) = Lu(e−) + w · (u(e−)− u(e+))

so that

u′(e+) = u(e−) + w−1Lu(e−)

and

L′u′(e+) = d · u′(e+) + w(u′(e+)− u′(e−)) = du(e−) + (dw−1 + 1)Lu(e−)

Adjoining a boundary edge. Suppose G′ is obtained from G by adjoining a
boundary edge e with w = w(e). In this case, ∂V (G) = ∂V (G′), so two indexings
` : [m] → ∂V (G) and `′ : [m] → ∂V (G′) are called consistent if ` = `′. Assume that
the indices of e− and e+ are i and j. Then a similar computation as before shows
that (

u′ ◦ `′
L′u′ ◦ `′

)
=

(
I 0

w(Ei,i + Ej,j − Ei,j − Ej,i) I

)(
u ◦ `
Lu ◦ `

)
.

The matrices described above will be called the boundary data transformations
for adjoining a boundary spike or boundary edge.

Standard form for layerable filtrations. In general a layerable filtration is
allowed to mix adjoining boundary spikes, adjoining boundary edges, and adjoining
isolated boundary vertices in any order. However, it is sometimes convenient for the
sake of computation to assume that all the isolated boundary vertices are adjoined
before the other operations. For finite networks, we can always arrange this; simply
take all the isolated boundary vertices that are adjoined at any step of the filtration,
adjoin them at the beginning, and include them in all subsequent ∂-graphs in the
filtration.

A standard form layerable filtration for (G,L) is a sequence of R-networks

(G0, L0) ⊆ (G1, L1) ⊆ · · · ⊆ (Gn, Ln) = (G,L),
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1
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1
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1

2

Fig. 5.5. A layerable filtration in standard form with a consistent labeling.

where (G0, L0) consists entirely of isolated boundary vertices, and (Gj+1, Lj+1) is
obtained from (Gj , Lj) by adjoining a boundary spike or boundary edge. A consistent
labeling for such a filtration consists of (bijective) labeling functions `j : [m] → ∂Vj
such that for each j, `j and `j+1 are consistent in the sense described above for the
two cases of adjoining a boundary spike and adjoining a boundary edge. See Figure
5.5 for an example.

Lemma 5.18. Let (G,L) be a layerable R×-network and let M be an R-module.
Let (G0, L0), . . . , (Gn, Ln) be a standard form layerable filtration for (G,L), and let
`0, . . . , `n be a consistent labeling for it. Let

T0 =

(
I 0
D I

)
,

where D = diag(d ◦ `0(1), . . . , d ◦ `0(m)). For j ≥ 0, let Tj be the boundary data
transformation associated to the operation (Gj−1, Lj−1) 7→ (Gj , Lj). For every φ ∈
Mm, there is a unique harmonic function such that u|∂V0 ◦ `0 = φ, and if uj = u|Vj ,
we have (

uj ◦ `j
Ljuj ◦ `j

)
= Tj . . . T1T0

(
φ
0

)
for j = 0, . . . , n.

Proof. The existence and uniqueness of u follows from Proposition 5.11. To prove
the matrix equation, note that G0 consists of isolated boundary vertices. Thus, all
functions u0 are harmonic and have L0u(x) = d(x)u(x), which establishes the case
j = 0. Then the equation follows for all j by inductive application of the foregoing
computation.

Remark 5.19. In the last lemma, computing the boundary data of uj at every
step of the filtration is sufficient to find the values of u on all of G. This is because
every vertex of G must be a boundary vertex at some step of the filtration.

Remark 5.20. To simplify the statement of Lemma 5.18, we have assumed that
each layerable extension adds only one boundary spike or boundary edge. In general,
it may be computationally convenient to adjoin multiple spikes or multiple boundary
edges at once. For instance, if m = 2 and one adjoins two boundary spikes with
parameters w1, w2 and d1, d2, then the matrix is

1 0 w−11 0
0 1 0 w−12

d1 0 1 + d1w
−1
1 0

0 d2 0 1 + d2w
−1
2

 .

Remark 5.21. Recording boundary potential and current data is not the only
feasible bookkeeping method for the harmonic continuation process. In some situ-
ations, it could more convenient to record the values of u on the boundary of Gj
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and all vertices adjacent to the boundary, rather than the recording u and Lu on the
boundary.

Remark 5.22. Direct computation will verify that the boundary data transforma-
tions discussed here are all symplectic matrices, that is, they satisfy

T tJT = J,

where

J =

(
0 −I
I 0

)
.

The relationship between layer-stripping and the symplectic group over R was studied
in [30] from the viewpoint of Lie theory, while our discussion makes the connection in
a more elementary and explicit way. The same matrices were written down in [27, p.
48], but without the interpretation as transformations of boundary behavior.

5.4. Using harmonic continuation to compute U0. Harmonic continuation
can be applied on nonlayerable networks as well. In section 3.2, we used harmonic
continuation to compute U0(clf(m,n), Lstd,Q/Z). Now we generalize this approach
to compute U0(G,L,M) for a finite R×-network (G,L), using layerable filtrations to
keep track of the harmonic continuation process.

If G is a ∂-graph and S ⊆ V ◦(G), then we define GS→∂ as the ∂-graph obtained
by changing the vertices in S from interior to boundary, so that

V (GS→∂) = V (G), E(GS→∂) = E(G), ∂V (GS→∂) = ∂V (G) t S.

Theorem 5.23. Let (G,L) be a finite R×-network, let S ⊆ V ◦(G), and suppose
GS→∂ is layerable. Then there exists a matrix A ∈ M|S|×(|∂V |+|S|)(R) such that for
every R-module M

U0(G,L,M) ∼= ker
(
A : M |S| →M |S|+|∂V |

)
.

The matrix A can be computed explicitly from a given layerable filtration for GS→∂ ,
as described by (5.1) and (5.3) below.

Proof. First, let us motivate the proof in light of earlier results. Let G′ = GS→∂
for short and recall ∂V (G′) = ∂V (G)tS. Note that since G′ and G differ only in the
assignment of boundary vertices, we have

U0(G,L,M) = {u ∈ U(G′, L,M) : u|∂V (G) = 0, Lu|∂V (G′) = 0}.

In other words, a function u ∈ U0(G,L,M) is equivalent to a harmonic function on
(G′, L) satisfying the additional boundary conditions that u|∂V (G) = 0 and Lu|∂V (G′) =
0.

Now G′ is layerable. Thus, as explained in Remark 5.14, a harmonic function
u on G′ is uniquely determined by its boundary data. Moreover, the values of the
function u can be found from the boundary data by harmonically continuing from
∂V (G′) inward along a layer-stripping filtration of G′. Thus, to find U0(G,L,M), we
need to start with boundary data on G′ satisfying our extra boundary conditions,
harmonically continue inward, and then ensure that the result we get is actually
harmonic on G′.

Suppose that we have a standard-form layerable filtration of G′ given by

∅ ⊆ (G0, L0) ⊆ · · · ⊆ (Gn, Ln) = (G′, L).
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∂V (Gn)

∂V (G0)

S ∂V (G)

u = φ u = 0

Fig. 5.6. Schematic overview of the proof of Theorem 5.23. Arrows show the direction of
harmonic continuation.

Our harmonic continuation will start with a function defined on ∂V (Gn) and then
extend it inward to ∂V (Gn−1) (see Figure 5.6). At step j (counting backward from n),
we will have a partially defined harmonic function whose domain is the roughly the
complement of Gj .

To make this idea precise, we define a complementary sub-∂-graph Hj by

V (Hn) = V (G′) \ V ◦(Gn),(5.1)

E(Hn) = E(G′) \ E(Gn),

V ◦(Hn) = V (G′) \ V (Gn),

∂V (Hn) = ∂V (Gn).

See Figure 5.7 for an example. The following facts follow from direct casework:
• If Gj+1 is obtained from Gj by adjoining a boundary spike, then Hj+1 is

obtained from Hj by contracting a boundary spike.
• If Gj+1 is obtained from Gj by adjoining a boundary edge, then Hj+1 is

obtained from Hj by deleting a boundary edge.
• The graph Hn consists of isolated boundary vertices.
• The graph H0 has the same vertex and edge sets as G and G, but a different

choice of boundary vertices. Specifically, ∂V (H0) is equal to ∂V (G0) rather
than ∂V (Gn) = ∂V (G).

This shows that Hn ⊆ Hn−1 ⊆ · · · ⊆ H0 is a standard-form layerable filtration of H0.

G0

H0

G1

H1

G2

H2

G3

H3

G4

H4

G5

H5

G6

H6

G7

H7

G8

H8

Fig. 5.7. Complementary layerable filtrations as defined by (5.1).



1082 JEKEL, LEVY, DANA, STROMME, AND LITTERELL

Harmonic continuation inward from the boundary of G toward ∂V (G0) will corre-
spond to building harmonic extensions through the filtration Hn, Hn−1, . . . But now
that Hj has been defined, we no longer need to work directly with the ∂-graphs Gj .
We can express U0(G,L,M) in terms of harmonic functions on H0 rather than har-
monic functions on Gn: Note that H0 and G differ only in the assignment of boundary
vertices; expressing the conditions for u ∈ U0(G,L,M) in terms of H0 yields

U0(G,L,M) = {u ∈ U(H0, L,M) : u|∂V (G) = 0, Lu|∂V (H0) = 0}.

As in Lemma 5.18, we can use the filtration Hn ⊆ · · · ⊆ H0 to parametrize the
harmonic functions on H0 in terms of their values on ∂V (Hn) = ∂V (G) t S. The
condition u|∂V (G) = 0 simply says that a subset of our initial parameters will be zero,
and thus our harmonic function will be parametrized by the values on S with the
values on the rest of ∂V (Hn) set to zero.

Thus, we proceed as follows: Given a vector φ ∈ MS , we extend φ by zero to
a vector in M∂V (Hn) = U(Hn, L|Hn

,M), then apply the sequence of boundary data
transformations associated to the filtration Hn, . . . , H0 as in Lemma 5.18 to compute
a harmonic extension u to H0. We let A be the transformation φ 7→ Lu|∂V (Hn) that
sends φ ∈MS to the boundary values of Lu for the harmonic extension to H0. Then
the functions u ∈ U0(G,L,M) correspond to the values of φ such that Aφ = 0, so that

(5.2) U0(G,L,M) ∼= ker(A : MS →M∂V (Hn)).

The matrix A is given explicitly as follows. Let m = |∂V (H0)| = |S| + |∂V (G)|,
and choose a consistent labeling for the filtration {Hj}. Assume that in the index-
ing of ∂V (Hn), the vertices in S are indexed first by 1, . . . , s and then the vertices
of ∂V (G) are indexed by s + 1, . . . , m. Let Tn, Tn−1, . . . , T0 be the sequence of
boundary data transformations corresponding to the filtration Hn, Hn−1, . . . , H0 (as
in Lemma 5.18 except with Gj replaced by Hn−j). Here Tn is the transformation for
the initial network Hn, and Tj is the transformation from Hj+1 to Hj . Then set

(5.3) A = (0m×m, Im×m)T0T1 . . . Tn

(
Is×s

0(2m−s)×s

)
.

Example 5.24. Let us apply Theorem 5.23 to the critical group of the graph shown
in Figure 5.8, left. By Proposition 2.23, it suffices to compute U0(G,Lstd,Q/Z), where
G is the middle ∂-graph in the figure with one boundary vertex. Let S = {x, y}; then
G′ = GS→∂ is the graph in Figure 5.8, right. We let Gj and Hj be the ∂-graphs shown
earlier in Figure 5.7. For each Gj and Hj , we define `j by labeling the boundary
vertices 1, 2, 3 from bottom to top (thus, 1 corresponds to x or v, 2 corresponds
to y or w, and 3 corresponds to z). To compute A by (5.3), we write down the

v

w

z

x

y

G G′

S

Fig. 5.8. Graphs for Example 5.24.
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transformations for H8, H7, . . . . Note that because d = 0, the initial transformation
T8 is the identity. The next few are

T7 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 −1 1 0 0

0 0 0 0 1 0

−1 0 1 0 0 1


, T6 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 −1 0 1 0 0

−1 1 0 0 1 0

0 0 0 0 0 1


,

T5 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 −1 0 1 0

0 −1 1 0 0 1


, T4 =



1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

and the rest of the transformations are computed similarly. After some straightfor-
ward computation,

A =
(
03×3 I3×3

)
T0 . . . T7T8

(
I2×2
04×2

)
=

 12 −9
−15 15

3 −6

 .

By performing invertible integer row and column operations, we can transform A into
the matrix

A′ =

3 0
0 15
0 0

 .

This implies

U0(G,Lstd,Q/Z) ∼= Z/3× Z/15 ∼= Z/3× Z/3× Z/5.

Harmonic continuation also allows us to compute the harmonic functions explicitly
from the parameters on S. We will demonstrate this by computing U0(G,Lstd,Z/3)
and U0(G,Lstd,Z/5). For a harmonic function u, we have from the last equation of
Lemma 5.18 that 

u(v)
u(w)
u(z)

0
0
0

 = T0 . . . T7T8


u(x)
u(y)
u(z)

0
0
0

 .

From explicit computation of the first two columns of T0 . . . T8, we find that when
u(z) = 0, we have

u(v) = 3u(x)− u(y), u(w) = −4u(x) + 5u(y).

To compute U0(G,Lstd,Z/3), we observe that since A = 0 mod 3, every choice of two
parameters in Z/3 on S yields a harmonic function, and we obtain two generators
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Z/3

0

−1

0

1

0

Z/3

−1

−1

0

0

1

Z/5

0

2

0

2

1

Fig. 5.9. Generators for U0(G,Lstd,Z/3) and U0(G,Lstd,Z/5) on the network G from Example
5.24.

shown in Figure 5.9. Next, to compute U0(G,Lstd,Z/5), we read off from the matrix
A that u must satisfy 3u(x)−6u(y) = 0, and so a generator is given by taking u(x) = 2
and u(y) = 1. The resulting harmonic function is shown in Figure 5.9.

Example 5.25. In section 3, we used harmonic continuation to compute
U0(clf(m,n), Lstd,Q/Z) without using Theorem 5.23. But in fact, we could have
applied Theorem 5.23, and it is instructive to see how our method in section 3 can be
derived from the ideas in this section.

Let G = clf(m,n). Using the indexing of the vertices from section 3.1, define
S = {0, 1}×{1, . . . , n} and S′ = {m−1, 0}×{1, . . . , n}. Note G′ = GS→∂ is layerable,
and a filtration is shown in Figure 5.10.

∂V (Gn) = ∂V (G) ∪ S,
∂V (G0) = ∂V (G) ∪ S′.

The layer-stripping filtration strips away the graph column by column; for j =
0, . . . ,m − 1, it removes the edges from {j} × {0, . . . , n} and {j + 1} × {0, . . . , n}.
In each column, it removes the edges from bottom to top or from top to bottom
depending on parity.

The filtration suggests a process of harmonic continuation where the initial pa-
rameters are the values of u on S = {0, 1}×{0, . . . , n} and the harmonic continuation
moves column by column from left to right in the picture. In the notation of section
3.2, this means solving for u in terms of a0 and a1 by finding aj inductively. In section
3.2, we did not use the same method of bookkeeping as in section 5.3 and Theorem
5.23 but rather kept track of potential values on two consecutive columns (see Remark
5.21).

Using the filtration pictured here, aj+1 can be found from a0, . . . , aj in 2n − 1
steps corresponding to the 2n − 1 edges connecting the jth and (j + 1)th columns.
Our approach in section 3.2 combined all these operations into one step by writing
harmonicity in terms of the matrix E. In fact, executing the 2n − 1 steps for each
column amounts to inverting the matrix E (recall 4E−1 appears in the upper left
block of the transformation T from section 3.2). The reason we did not have to do
this was that we avoided dealing directly with E−1 in the proof of Lemma 3.5.

After solving for a2, . . . , am−1 through harmonic continuation, the method of
Theorem 5.23 requires us to find the values of the intitial parameters a0 and a1 that
will guarantee Lu|∂V (G0) = 0. Recall ∂V (G0) = ∂V (G) ∪ S′. Because the matrix
T was constructed to check harmonicity on one column of vertices, the condition
Lstdu|S′ = 0 is equivalent to

T

(
am−1
am−2

)
=

(
a0

am−1

)
, T

(
a0

am−1

)
=

(
a1
a0

)
.
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Fig. 5.10. A layerable filtration of clf(4, 2) with S = {0, 1} × {1, 2} changed to boundary
vertices. The vertices on the left and right sides of each picture are identified.

Since the bottom block row of T is (I, 0), it suffices to check T2(am−1, am−2)t =
(a1, a0)t. In short, Lu|S′ = 0 amounts to the fixed-point condition Tm(a1, a0)t =
(a1, a0)t in section 3.2. Meanwhile, the condition Lstdu|∂V (G) = 0 was checked through
our computation of M1 in section 3.3.

5.5. Bounds on the number of invariant factors. If the ring R is a PID,
then Theorem 5.23 immediately yields the following bound on the number of invariant
factors for the torsion submodule of Υ(G,L), which we will apply below to the critical
group and the Laplacian eigenvalues of a graph.

Corollary 5.26. Let R be a PID, and let (G,L) be a finite nondegenerate
R-network. Let S ⊆ V ◦(G), and suppose GS→∂ is layerable. Then the torsion sub-
module of Υ(G,L) has at most |S| invariant factors.

Proof. By Proposition 2.20, the torsion submodule of Υ(G,L) is isomorphic to
U0(G,L, F/R), where F is the field of fractions for R. By Theorem 5.23, there is a
matrix A with |S| columns such that

U0(G′, Lstd,Q/Z) ∼= kerF/R(A).

Recall that if B is a matrix over a PID R, then B is said to be in Smith normal
form if the only nonzero entries of B are on the diagonal, and the diagonal entries a1,
a2, . . . , an satisfy aj |aj+1. Moreover, every matrix over R can put into Smith normal
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form by multiplying on the left and right by square matrices which are invertible over
R (see, for instance, [20, section 12.1, Exercises 16–19]). In particular, if A is the
matrix given by Theorem 5.23, then there exist square matrices U and V which are
invertible over R such that A′ = UAV is in Smith normal form. By interpreting U
and V as changes of coordinates, we can see that kerF/R(A) ∼= kerF/R(A′). Thus, the
invariant factors for Crit(G) are found from the diagonal entries of A′. Since A′ has
|S| columns, there are at most |S| invariant factors.

Corollary 5.26 provides a priori upper bounds on the number of invariant factors
of the critical group and the mutliplicity of Laplacian eigenvalues (Corollaries 5.27
and 5.30 below). Though these bounds are not always sharp, they have the advantage
of being computed geometrically without writing down any matrices. Moreover, we
will give several families of graphs for which they are sharp.

Corollary 5.27. Suppose that G is a graph without boundary and that GS→∂ is
layerable. Then Crit(G) has at most |S| − 1 invariant factors.

Proof. Choose some x ∈ S, and let G′ = Gx→∂ . Then by Proposition 2.23, (G′, L)
is nondegenerate and we have

Crit(G) ∼= U0(G′, Lstd,Q/Z).

Let S′ = S \ x. Then (G′)S′→∂ is layerable, so by Corollary 5.26, U0(G′, Lstd,Q/Z)
has at most |S′| = |S| − 1 invariant factors.

Example 5.28. Consider the complete graph Kn. Note that we can make the
graph Kn into a layerable ∂-graph by changing n − 1 of the n vertices to boundary
vertices. On the other hand, it is shown in [34, Lemma, p. 278] that Crit(Kn) ∼=
(Z/n)n−2, which has n− 2 = (n− 1)− 1 invariant factors.

Example 5.29. Let Qn be the 1-skeleton of the k-dimensional cube, described
explicitly by V = {0, 1}n with x ∼ y if and only if x and y have exactly n − 1
coordinates equal to each other.

Let S = {0}× {0, 1}n−1 and T = {1}× {0, 1}n−1. Then (Qn)S→∂ is layerable, as
we will verify by reducing it to the empty graph through a sequence of layer-stripping
operations. All the edges between vertices in S are boundary edges, so we can delete
them. After that, all edges from S to T are boundary spikes, so we can contract
them, and then the vertices in T become boundary vertices. Finally, we can delete all
the edges between vertices in T and we are left with T as a set of isolated boundary
vertices.

Since (Qn)S→∂ is layerable, Corollary 5.26 shows that Crit(Qn) has at most |S|−
1 = 2n−1 − 1 invariant factors. This bound is sharp because it was shown in [3,
Theorem 1.1] that there are exactly 2n−1 − 1 invariant factors.

Corollary 5.30. Suppose G is a graph without boundary and GS→∂ is layerable.
Then for any R×-network (G,L), every eigenvalue of the generalized Laplacian L has
multiplicity at most |S|. In particular, this holds when L is the standard adjacency
matrix or standard Laplacian.

Proof. Consider the C[z]-network (G, zI − L) as in Example 2.7. We claim that
the number of invariant factors of Υ(G, zI−L) over C[z] is the maximum multiplicity
of an eigenvalue of L. Note that this claim together with Corollary 5.26 will complete
the proof.

To prove the claim, note that as in Example 2.7, Υ(G, zI −L) has an elementary
divisors decomposition as the direct sum of cyclic modules C[z]/(z − λj) over the
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eigenvalues λ1, . . . , λn. Because the elements z − λ for λ ∈ C are distinct primes in
C[z], the number of invariant factors decomposition is

Υ(G, zI − L) ∼=
m⊕
k=1

C[z]/
∏

λ:mult(λ)≤m−k+1

(z − λ)

 ,

where mult(λ) is the multiplicity of λ and m = maxj mult(λj). Thus, the number of
invariant factors of Υ(G, zI − L) is the maximum multiplicity of an eigenvalue λ.

Example 5.31. We mentioned that for the complete graph Kn, one must assign
n−1 boundary vertices. The adjacency matrix of Kn has all off-diagonal entries equal
to 1 and thus has the eigenvalue 0 with multiplicity n− 1.

Example 5.32. Let Cn by the n-cycle graph. Observe that we can make Cn into
a layerable ∂-graph by changing two adjacent vertices to boundary vertices. This
implies that every eigenvalue of the adjacency matrix has multiplicity ≤ 2. The
adjacency matrix is Σ + Σ−1, where Σ is the permutation matrix representing the
n-cycle. Since the eigenvalues of Σ are {e2πik/n}n−1k=0 , the eigenvalues of Σ + Σ−1 are
{2 cos(2πk/n)}n−1k=0 . In particular, every eigenvalue λ 6= ±2 has multiplicity 2.

5.6. Infinite layerable filtrations. In this section, we generalize Proposition
5.11 to infinite ∂-graphs, allowing an infinite sequence of simple layerable extensions.
We use the following auxiliary definition.

Definition 5.33. Suppose that {Gα} is a collection of sub-∂-graphs of a given
∂-graph G. Define

⋃
αGα by

V

(⋃
α

Gα

)
=
⋃
α

V (Gα), V ◦

(⋃
α

Gα

)
=
⋃
α

V ◦(Gα), E

(⋃
α

Gα

)
=
⋃
α

E(Gα).

The definition for
⋂
αGα is the same with ∪ replaced by ∩. One checks straightfor-

wardly from Definition 4.4 that
⋃
αGα and

⋂
αGα are sub-∂-graphs.

Definition 5.34. We say that G′ is a layerable extension of G if there is a se-
quence of sub-∂-graphs

G = G0 ⊆ G1 ⊆ . . .
such that G′ =

⋃
αGj.

In order to extend Proposition 5.11 to the infinite case, we need to be able to take
limits of our algebraic functors along increasing sequences of sub-∂-graphs. We apply
the notions of direct (inductive) limits and inverse (projective) limits of R-modules.
For background, see [20, Exercises 7.6.8, 10.3.25, and 10.3.26], [2, Exercises 2.14–19].

Lemma 5.35. Let (G0, L0) ⊆ (G1, L1) ⊆ . . . be a sequence of subnetworks of
(G′, L′) and assume that

⋃
j Gj = G′. Then

(1) Υ(G′, L′) is (isomorphic to) the direct limit of the sequence

Υ(G0, L0)→ Υ(G1, L1)→ . . . ,

(2) U(G′, L′,M) is (isomorphic to) the inverse limit of the sequence

· · · → U(G1, L1,M)→ U(G0, L0,M),

(3) U0(G′, L′,M) is (isomorphic to) the direct limit of the sequence

U0(G0, L0,M)→ U0(G1, L1,M)→ . . . .
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Proof. To prove (1), let Y be the direct limit of the sequence Υ(G0, L0). Note
that we have a short exact sequence of directed systems

0 L0(RV ◦(G0)) RV (G0) Υ(G0, L0) 0

0 L1(RV ◦(G1)) RV (G1) Υ(G1, L1) 0

...
...

...

α0,1 β0,1 γ0,1

α1,2 β1,2 γ1,2

where the vertical maps are the obvious ones obtained from the inclusions V (Gn)→
V (Gn+1) and V ◦(Gn)→ V ◦(Gn+1). Moreover, we have maps

0 Ln(RV ◦(Gn)) RV (Gn) Υ(Gn, Ln) 0

0 L′(RV ◦(G′)) RV (G′) Υ(G′, L′) 0,

αn βn γn

where the vertical arrows are obtained from the inclusion Gn → G. These maps
satisfy αn ◦ αm,n = αm for m < n, and the same holds for β and γ. Therefore, the
universal property of direct limits [2, Exercise 2.16] gives us maps

0 lim−→Ln(RV ◦(Gn)) lim−→RV (Gn) lim−→Υ(Gn, Ln) 0

0 L′(RV ◦(G′)) RV (G′) Υ(G′, L′) 0.

α β γ

Because the direct limit is an exact functor [2, Exercise 2.19], the top row of this
diagram is exact. The bottom row is exact by construction of Υ. We easily see
that the first two vertical maps are isomorphisms since V ◦(G′) =

⋃
n V
◦(Gn) and

V (G′) =
⋃
n V (Gn). Therefore, the five-lemma implies that the third vertical map is

an isomorphism. This completes the proof of (1).
The statement (2) follows by applying the Hom(−,M) functor to (1) because

whenever M0 →M1 → . . . is a sequence of R-modules, there is a natural isomorphism

Hom(lim−→Mn,M) ∼= lim←−Hom(Mn,M).

The proof of (3) is symmetrical to the proof of (1). Instead of using the short
exact sequence

0→ L(RV ◦(G))→ RV (G)→ Υ(G,L)→ 0

for each network G = Gn or G = G′, we use the short exact sequence

0→ U0(G,L,M)→ RV ◦ ⊗M L⊗id−−−→ (L⊗ id)(RV ◦ ⊗M)→ 0.

Here RV ◦ ⊗M is viewed as the module of finitely supported functions V ◦ → M . In
the last step, we apply the five-lemma to show that the first map out of three is an
isomorphism rather than the last map as in (1).
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Proposition 5.36. Suppose that an R×-network (G′, L′) is a layerable extension
of (G,L) through the filtration {(Gj , Lj)}∞j=0. Let S ⊆ V (G′) be the set of vertices
which are adjoined as isolated boundary vertices at some step of the filtration. Then
the inclusion map (G,L)→ (G′, L′) induces isomorphisms

Υ(G′, L′) ∼= Υ(G,L)⊕RS,
U(G′, L′,M) ∼= U(G,L,M)×MS ,

U0(G′, L′,M) ∼= U0(G,L,M).

Proof. Let Sn = S ∩ V (Gn). Then by Proposition 5.11, the maps Υ(G,L) ⊕
RSn → Υ(Gn, Ln) are isomorphisms. By passing to the direct limit, we see that
Υ(G,L) ⊕ RS → Υ(G′, L′) is an isomorphism. The arguments for the other two
statements are similar.

6. Functorial properties of layer-stripping.

6.1. Unramified ∂-graph morphisms and layer-stripping. In this section,
we will show that layer-stripping pulls back through unramified ∂-graph morphisms.
Here it is convenient to take the perspective of removing things from a ∂-graph rather
than adding things, layer-stripping operations rather than layerable extensions, and
decreasing rather than increasing filtrations. Recall that the layer-stripping operations
are deleting an isolated boundary vertex, contracting a boundary spike, and deleting
a boundary vertex. We will also need the following definitions concerning unramified
∂-graph morphisms and preimages of sub-∂-graphs.

Definition 6.1. We say a ∂-graph morphism f : G → H is an unramified if
deg(f, x) = 1 for all x ∈ V ◦(G) and deg(f, x) ≤ 1 for all x ∈ ∂V (G). We apply the
same terminology to R-network morphisms.

Lemma 4.2 implies that ∂-graphs and unramified morphisms form a category,
which we will denote ∂-graphunrm. The category of R-networks and unramified mor-
phisms will be denoted R-netunrm. The full subcategory of finite ∂-graphs or networks
will be denoted by a superscript “0.” We remark that covering maps and inclusions
of sub-∂-graphs are unramified. Moreover, restricting an unramified morphism to a
sub-∂-graph yields another unramified morphism.

Definition 6.2. If f : G → H is ∂-graph morphism and H ′ is a sub-∂-graph of
H, then we can define the pullback or preimage f−1(H ′) as the ∂-graph given by

V (f−1(H ′)) t E(f−1(H ′)) = f−1(V (H ′) t E(H ′)),

V ◦(f−1(H ′)) = f−1(V ◦(H ′)) ∩ V ◦(G).

Straightforward casework verifies that f−1(H ′) is a sub-∂-graph of G.

Lemma 6.3. Suppose f : G → H is an unramified morphism between finite ∂-
graphs. Suppose H2 ⊆ H1 ⊆ H are harmonic sub-∂-graphs. If H2 is obtained from H1

by a layer-stripping operation, then f−1(H2) is obtained from f−1(H1) by a sequence
of layer-stripping operations.

Proof. Suppose that H2 is obtained from H1 by deleting a boundary edge e. Since
f must map interior vertices to interior vertices, any preimage of a boundary vertex is
a boundary vertex. Thus, f−1(e) consists of boundary edges, so f−1(H2) is obtained
from f−1(H1) by deleting boundary edges.

Suppose that H2 is obtained from H1 by deleting an isolated boundary vertex
x. Now f−1(x) may contain boundary vertices of f−1(H2) as well as edges which
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1A

2A

3A

1B

2B

3B

G = f−1(H1)

1

2

3

H = H1

1A

2A

1B

2B

f−1(H2)

1

2

H2

f

f |f−1(H2)

Delete boundary
edge (3A, 3B),
then contract

boundary spikes
(2A, 3A) and

(2B, 3B).

Contract
boundary

spike (2, 3).

Fig. 6.1. One case in the proof of Lemma 6.3. Here H1 = H, and H2 is obtained from H1 by
contracting a boundary spike.

are collapsed by the map f into the vertex x. Every edge in f−1(x) is a boundary
edge since its endpoints are also in f−1(x) (Definition 4.1(4)) and because f maps
interior vertices to interior vertices (Definition 4.1 (2)). Thus we can obtain f−1(H2)
by deletlng the boundary edges in f−1(x), and then deleting the vertices in f−1(x),
which are now isolated boundary vertices.

Suppose that H2 is obtained from H1 by contracting a boundary spike e with
boundary endpoint x = e+ and interior endpoint y = e−. We illustrate this case
in Figure 6.1. Then we obtain f−1(H2) from f−1(H1) in several steps. First, any
edges in f−1(x) are boundary edges, and we can delete them. Second, if there are
any isolated boundary vertices in f−1(x), we delete them. At this point, any vertex
left in f−1(x) is attached to an edge in f−1(e) and no other edges.

Now consider each edge e′ ∈ f−1(e). Note e′+ ∈ f−1(x) is a boundary vertex. If
e′− is also a boundary vertex, then we delete e′ as a boundary edge and then delete
e′+ as an isolated boundary vertex. If e′− is an interior vertex, then we can contract
e′ as a spike, which will automatically remove e′+ ∈ f−1(x). These steps will allow
us to obtain f−1(H2) from f−1(H1). Indeed, all vertices and edges in f−1(x) have
been removed and all edges in f−1(e) have been removed. Moreover, all vertices in
f−1(y) are now boundary vertices; indeed if y′ ∈ f−1(y) was interior, then because
E(y′) ∩ f−1(E(H1)) → E(y) is bijective, y′ must have been the endpoint of some e′

which mapped to e. This e′ was contracted as a boundary spike, which means y′ has
been changed to a boundary vertex.

These are the only possibilities; thus, by a sequence of layer-stripping operations,
we can obtain f−1(H2) from f−1(H1).

The previous lemma immediately implies the following.

Lemma 6.4. Let G and H be finite ∂-graphs. If H is layerable and there is an
unramified morphism f : G→ H, then G is also layerable.

Before developing our basic ideas further, we must clear up some technical issues
pertaining to pulling back layer-stripping operations. Lemma 6.3 shows that each
layer-stripping operation pulls back to some sequence of layer-stripping operations,
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but this sequence is not unique since the transformation f−1(H1) 7→ f−1(H2) could
be broken up into layer-stripping operations in multiple ways. However, with a little
cleverness, we can find a type of elementary operation that pulls back uniquely to
another operation of the same type.

Definition 6.5. We define a three-step layer-stripping operation to be a sequence
of boundary edge deletion, isolated boundary vertex deletion, and boundary spike con-
traction (in that order). Multiple edges or vertices are allowed to be removed at
each step; however, if multiple boundary spikes are contracted, then they are not al-
lowed to share any endpoints with each other. We allow any one of the three steps to
be trivial, and thus a simple layer-stripping operation can be considered a three-step
layer-stripping operation. We allow infinitely many vertices or edges to be removed if
the ∂-graph is infinite.

The following lemma applies even to infinite ∂-graphs. For an example, see
Figure 6.2.

Lemma 6.6. Suppose f : G→ H is an unramified ∂-graph morphism, and suppose
H2 ⊆ H1 ⊆ H are sub-∂-graphs. If H2 is obtained from H1 by a three-step layer-
stripping operation, then f−1(H2) is obtained from f−1(H1) by a three-step layer-
stripping operation.

Proof. The steps are the same as in Lemma 6.3 but we must order the operations
in a nonobvious way:

• Delete all boundary edges in f−1(H1) that map to the deleted boundary edges
in H1.

• Delete all boundary edges in f−1(H1) that map to the deleted isolated bound-
ary vertices in H1.

• Delete all boundary edges in f−1(H1) that map to the boundary endpoints
of spikes in H1.

• Delete all boundary edges in f−1(H1) that map to the contracted boundary
spikes in H1.

• Delete all isolated boundary vertices in f−1(H1) that map to the deleted
isolated boundary vertices in H1.

• Delete all isolated boundary vertices in f−1(H1) that map to the boundary
endpoints of contracted spikes in H1.

• Contract all boundary spikes in f−1(H1) that map to the contracted boundary
spikes in H1.

We leave the reader to verify that this works by adapting the casework in
Lemma 6.3.

We define as three-step layer-stripping filtration of a ∂-graph G as a sequence of
subgraphs G = G0 ⊇ G1 ⊇ . . . such that

⋂
Gj = ∅ and Gj+1 is obtained from Gj

by a three-step layer-stripping operation. The last lemma is convenient because it
implies as follows.

Lemma 6.7. Suppose that f : G → H is an unramified ∂-graph morphism. If
H0 ⊇ H1 ⊇ . . . is a three-step layer-stripping filtration of H, then f−1(H0) ⊇
f−1(H1) ⊇ . . . is a three-step layer-stripping filtration of G. Therefore, one can de-
fine a contravariant functor ∂-graphunrm → Set by mapping G to the set of three-step
layer-stripping filtrations of G.

Remark 6.8. As in Observation 5.5, if G′ is obtained from G by a sequence of
layer-stripping operations, then G′ is a sub-∂-graph of G. Moreover, Lemmas 5.7 and
5.8 generalize to layer-stripping operations, even with infinitely many edges.
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Fig. 6.2. An example of Lemma 6.6.

Remark 6.9. Lemma 6.3 fails for harmonic morphisms in general: If x is the
boundary endpoint of a boundary spike e, then a vertex in f−1(x) might not be a
boundary spike. It could have degree > 1 since there can be multiple preimages of e
attached to it. This problem is illustrated by the ∂-graph morphism in Figure 4.4.

6.2. The flower functor. Layer-stripping can be viewed as a loose discrete
analogue of a deformation retraction; it is a reduction to a smaller space that leaves
our algebraic invariant Υ unchanged. This inspires the following analogue of homotopy
equivalence.

Definition 6.10. We say two finite ∂-graphs G and G′ are layerably equivalent
if there is a finite sequence of ∂-graphs G = G0, G1, . . . , Gn = G′ such that for each
j, either (1) Gj is obtained from Gj+1 by a layer-stripping operation or (2) Gj+1

is obtained from Gj by a layer-stripping operation. As usual, we apply the same
terminology to R-networks.

If two finite R×-networks (G,L) and (G′, L′) are layerably equivalent, then by
Lemma 5.7 we have

Υ(G,L)⊕Rn ∼= Υ(G′, L′)⊕Rn
′

for some n and n′ ∈ N0. Thus, the torsion submodules of Υ(G,L) and Υ(G′, L′) are
isomorphic. Similar reasoning applies the modules U and U0 for the two networks.

Our next goal is to find a canonical representative for each equivalence class. A
natural candidate is a ∂-graph with no boundary spikes, boundary edges, or discon-
nected boundary vertices, which we will call a flower. The name “flower” was coined
in 1992 by David Ingerman and James Morrow, who were studying some planar ex-
amples which looked like flowers [25], and it was first written down in [38]. Examples
of flowers include the ∂-graph in Figure 6.3, the boundary-interior bipartite ∂-graphs
in Example 2.21 and Figure 2.3, the clf ∂-graphs discussed in section 3 (see Figure
3.2), and the ∂-graph on the left-hand side of Figure 4.4.

Every finite ∂-graph is layerably equivalent to a flower. Indeed, we can keep
removing boundary spikes, boundary edges, and isolated boundary vertices until there
are no more left. The result is a sequence of layer-stripping operations that transforms
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Fig. 6.3. Example of a flower.

G into a flower `(G). We claim that in fact this flower is unique and the map
G 7→ `(G) is a functor on ∂-graph0unrm.

Theorem 6.11.
(1) Every finite ∂-graph G can be layer-stripped to a unique flower `(G).
(2) There is exactly one flower in each layerable equivalence class.
(3) If f : G→ H is a UHM, then `(G) ⊆ f−1(`(H)).
(4) ` is a functor ∂-graph0unrm → ∂-graph0unrm, and the inclusion `(G)→ G is

a natural transformation `→ id.

Proof. To prove the uniqueness claim of (1), suppose that we have two flowers H
and H ′ ⊆ G, and let

G = H0 ⊇ H1 ⊇ · · · ⊇ Hn = H, G = H ′0 ⊇ · · · ⊇ H ′m = H ′

be the corresponding three-step layer-stripping filtrations. Applying Lemma 6.7 to
the inclusion map H → G, we see that

H = H ∩H ′0 ⊇ · · · ⊇ H ∩H ′m = H ∩H ′

is another three-step layer-stripping filtration. Since H is a flower, one cannot perform
any nontrivial layer-stripping operations on it, so the filtration must be trivial, so that
H = H ∩H ′. By symmetry, H ′ = H ∩H ′ = H.

To prove (2), suppose G′ is obtained from G by a layer-stripping operation. We
just showed `(G) is independent of the sequence of layer-stripping operations, so
that `(G) is obtained by performing the layer-stripping operation G 7→ G′, then
reducing G′ to a flower. Hence, `(G) = `(G′). In general, if we have a sequence
G = G0, G1, . . . , Gn = G′ witnessing layerable equivalence, then `(Gj) and `(Gj+1)
are equal (based on the identification of Gj as a subgraph of Gj+1 or vice versa) and
hence `(G) = `(G′).

Claim (3) follows from Lemma 6.7, and (4) follows from (3).

Remark 6.12. G is layerable if and only if `(G) = ∅.

As a consequence, the study of torsion for finite R×-networks can be reduced in
a functorial manner to the study of torsion for flowers.

Corollary 6.13.
(1) There is a flower functor ` : R×-net0unrm → R×-net0unrm.
(2) Υ(G,L) = Υ(`(G,L))⊕Rn for some n (depending on (G,L)).
(3) If F is any functor on R-modules such that F (M ⊕N) ∼= F (M)⊕F (N) and

F (R) = 0, then the inclusion natural transformation `→ id on R×-net0unrm
induces a natural isomorphism F ◦Υ ◦`→ F ◦Υ.

In particular, if R is a PID, then we can take F to be the functor which maps
an R-module to its torsion submodule, and thus, the torsion part of Υ ◦ `(G,L) is
naturally isomorphic to the torsion part of Υ(G,L).
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Proof. Statement (1) follows directly from Theorem 6.11. Statement (2) follows
from Lemma 5.7 because `(G,L) is obtained from (G,L) by a sequence of layer-
stripping operations. Statement (3) follows from (2).

7. Complete reducibility. Complete reducibility is a generalization of layer-
ability which allows us to applying layer-stripping operations as well as split apart
∂-graphs that are glued together at one boundary vertex (Definition 7.7). In Theo-
rem 7.13 we will give an algebraic characterization of complete reducibility, which is
analogous to Theorem 5.16, except that it uses Laplacians with d = 0 rather than
generalized Laplacians. In preparation for the proof, we first define a reduced version
of Υ suited to Laplacians with d = 0. At the end of the section, as an application of
Theorem 7.13, we show that boundary-interior bipartite ∂-graphs of a certain type
are not completely reducible.

7.1. The reduced module Υ̃. Recall that a generalized Laplacian L is given
by w : E → R and d : V → R. If d = 0, we will call L a Laplacian or weighted
Laplacian. A network given by a weighted Laplacian will be called a normalized
R-network. For weighted Laplacians, constant functions are always harmonic, and
dually every element of L(RV ) has coordinates which sum to zero. Therefore, it will
be convenient to define a reduced version of Υ.

Let L be a weighted Laplacian. Let ε : RV → R be the map which sums the
coordinates, given by x 7→ 1 for every x ∈ V . Then imL ⊆ ker ε because

ε(Lx) =
∑
e∈E(x)

w(e)(εx− εe−) = 0.

Therefore, we can define
Υ̃(G,L) = ker ε/L(RV ◦).

We remark that since ker ε ⊆ RV , we can regard Υ̃(G,L) as a submodule of Υ(G,L).
Moreover, for each vertex x ∈ V (G), there is an internal direct sum

Υ(G,L) = Υ̃(G,L)⊕Rx.

We also define

Ũ(G,L,M) = U(G,L,M)/(constant functions).

Most of the results for Υ and their proofs adapt in a straightforward way to Υ̃. We
list the ones we will need for the algebraic characterization. Using similar reasoning
as in Lemma 2.9, one can show as follows.

Lemma 7.1. If L is a weighted Laplacian on G, then there is a natural R-module
isomorphism

Ũ(G,L,M) ∼= HomR(Υ̃(G,L),M).

Moreover, by similar reasoning as in section 2.3, we have the following.

Lemma 7.2. If (G,L) is a nondegenerate normalized network, then a free resolu-

tion of Υ̃(G,L) is given by

· · · → 0→ RV ◦
L−→ ker ε→ Υ̃(G,L)→ 0.

Moreover,
TorR1 (Υ̃(G,L),M) ∼= U0(G,L,M)

and TorRj (Υ̃(G,L),M) = 0 for j > 1.
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Lemma 5.7 carries over almost word for word.

Lemma 7.3. Let (G′, L′) be a normalized R×-network. If (G′, L′) is obtained
from (G,L) by adjoining a boundary spike or boundary edge, then the induced maps

Υ̃(G,L)→ Υ̃(G′, L′) and U(G,L,M)→ U(G′, L′,M) are isomorphisms.
If (G′, L′) is obtained from (G,L) by adjoining an isolated boundary vertex x and

G is nonempty, then we have

Υ̃(G′, L′) ∼= Υ̃(G,L)⊕R

and
Ũ(G′, L′,M) ∼= Ũ(G,L,M)×M.

7.2. Completely reducible ∂-graphs.

Definition 7.4. Given ∂-graphs G1 and G2 and specified vertices xi ∈ ∂Vi for
i = 1, 2, the boundary wedge-sum

G1 ∨G2 = G1 ∨x1,x2
G2

is obtained by identifying x1 with x2 in the disjoint union G1 tG2. Note that G1 and
G2 are sub-∂-graphs of G1 ∨G2. We apply the same terminology to R-networks as to
∂-graphs.

Just as with layerable extensions, the behavior of Υ̃ under boundary wedge-sums
and disjoint unions is easy to characterize. A similar result for the critical group of
graphs without boundary appears in [34, Remark, p. 280].

Lemma 7.5. Let (G,L) be a normalized R-network. If (G,L) = (G1, L1)∨(G2, L2),
then

Υ̃(G,L) ∼= Υ̃(G1, L1)⊕ Υ̃(G2, L2),

Ũ(G,L,M) ∼= Ũ(G1, L1,M)× Ũ(G2, L2,M),

U0(G,L,M) ∼= U0(G1, L1,M)⊕ U0(G2, L2,M).

If (G,L) = (G1, L1) t (G2, L2), then

Υ̃(G,L) ∼= Υ̃(G1, L1)⊕ Υ̃(G2, L2)⊕R,

Ũ(G,L,M) ∼= Ũ(G1, L1,M)× Ũ(G2, L2,M)×M,

U0(G,L,M) ∼= U0(G1, L1,M)⊕ U0(G2, L2,M).

Proof. In the case of a boundary wedge-sum, we have an internal direct sum

ker ε = ker ε1 ⊕ ker ε2.

Moreover,

L(RV ◦) = L1(RV ◦1 ) + L2(RV ◦2 ), L1(RV ◦1 ) ⊆ ker ε1, L2(RV ◦2 ) ⊆ ker ε2.

Therefore, taking quotients yields

Υ̃(G,L) ∼= Υ̃(G1, L1)⊕ Υ̃(G2, L2).

The claim for Ũ follows by applying Hom(−,M).



1096 JEKEL, LEVY, DANA, STROMME, AND LITTERELL

(4)

(2)

(2)

(3)

(3)

(2)

(1)
∅

(3) (1)
∅

Fig. 7.1. A completely reducible ∂-graph. The boundary vertices are black and interior vertices
are white. The operations are (1) isolated boundary vertex deletion, (2) boundary spike contraction,
(3) boundary edge deletion, and (4) splitting a boundary wedge-sum.

To prove the claim for U0, consider the map

Φ : U0(G1, L1,M)⊕ U0(G2, L2,M)→ U0(G,L,M)

defined by the inclusion maps (Gj , Lj) → (G,L). Let x be the common boundary
vertex of G1 and G2. To see that Φ is injective, suppose Φ(u1 ⊕ u2) = 0. Then u1
and u2 vanish at x by definition of U0(Gj , Lj ,M), and they vanish on the rest of G1

and G2, respectively, because G1 and G2 intersect only at x. To show surjectivity of
Φ, let u ∈ U0(G,L,M), and let uj = u|Vj . Clearly, uj = 0 on ∂Vj since ∂Vj ⊆ ∂V .
Moreover, Ljuj(y) = Lu(y) = 0 for every y ∈ Vj \ {x}. Because im(Lj ⊗ idM ) ⊆
ker(εj ⊗ idM ), this implies that Lju(x) = 0 also. Thus, uj ∈ U0(Gj , Lj ,M) and hence
u = Φ(u1 ⊕ u2) ∈ im Φ. So Φ is an isomorphism as desired.

In the case of a disjoint union, the claim for Υ̃ is proved in a similar way after
noting that

ker ε ∼= ker ε1 ⊕ ker ε2 ⊕R.

The claim for U follows by applying Hom(−,M). The argument for U0 is similar to
the boundary wedge-sum case but easier.

Definition 7.6. Completely reducible finite ∂-graphs are defined to be the small-
est class C of finite ∂-graphs that contains the empty graph and is closed under layer-
able extensions, disjoint unions, and boundary wedge-sums. More informally, a graph
G is completely reducible if it can be reduced to nothing by layer-stripping and splitting
apart boundary wedge-sums and disjoint unions. See Figure 7.1 for an example.

Definition 7.7. A finite ∂-graph is irreducible if it has no boundary spikes,
boundary edges, or isolated boundary vertices, and it is not a boundary wedge-sum
or disjoint union. Note that every irreducible ∂-graph is a flower.

The following is an analogue of Proposition 5.12.

Proposition 7.8. Let G be a finite nonempty completely reducible ∂-graph. If
(G,L) is a normalized R×-network, then (G,L) is nondegenerate and Υ̃(G,L) is a
free R-module of rank |∂V (G)| − 1.

Proof. Let C be the class of ∂-graphs for which the claims hold, together with the
empty ∂-graph. Lemmas 7.3 and 7.5 imply that C is closed under layerable extensions,
disjoint unions, and boundary wedge-sums.
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Fig. 7.2. A covering map f : G̃→ G such that G decomposes as a boundary wedge-sum and G̃
does not. In fact, G is completely reducible and G̃ is irreducible.

Unlike layer-stripping operations, the operation of spliting apart a boundary
wedge-sum does not pull back through unramified ∂-graph morphisms. The prob-
lem is illustrated in Figure 7.2. However, we do have the following.

Observation 7.9. Suppose that G is a sub-∂-graph of H and that H decomposes
as a boundary wedge-sum or disjoint union of H1 and H2. Then G decomposes
as a boundary wedge-sum or disjoint union of G ∩ H1 and G ∩ H2. Together with
Lemma 6.3, this implies that a sub-∂-graph of a completely reducible ∂-graph is also
completely reducible.

7.3. Algebraic characterization. We shall prove an algebraic characterization
of complete reducibility in the same way as we did for layerability (Theorem 5.16).
As in the case of layerability, the first and most significant step concerns degenerate
networks over fields. Although Lemma 7.10 below is completely analogous to Lemma
5.15, neither one follows from the other. It is more difficult to construct degenerate
networks now that we cannot choose the diagonal entries of L arbitrarily, but the
condition non-complete-reducibility is also stronger than nonlayerability.

Lemma 7.10. Let G be a finite ∂-graph and let F be an infinite field. Then G
is completely reducible if and only if every normalized F×-network on G is non-
degenerate.

Proof. The implication =⇒ follows from Proposition 7.8.
Let G′ be a minimal sub-∂-graph of G which is not completely reducible. Note

that G′ must be irreducible. As in the proof of Lemma 5.15, it suffices to construct
degenerate edge weights on G′.

Our strategy is to first choose a potential function u with u|∂V = 0, and then
choose an edge-weight function w that will make Lu ≡ 0. Let S ⊆ E(G) be the
union of all cycles, i.e., S contains every edge that is part of any cycle. Note that
every edge in S must have endpoints in distinct components of G \ S. Define u to be
zero on every component of G \ S that contains a boundary vertex of G, and assign
u a different nonzero value on each component of G \ S that does not contain any
boundary vertices.

We need to guarantee that u is not identically zero. But in fact, we claim that u
is nonzero at every interior vertex. To prove this, it suffices to show that every edge
e with endpoints x ∈ ∂V and y ∈ V ◦ must be in S, that is, such an edge e must be
contained in some cycle. By hypothesis, our edge e is not a boundary spike. Thus,
there is some other edge e′ 6= e incident to x. Let z be the other endpoint e′. Since G
is not a boundary wedge-sum, deleting x leaves G connected. Thus, there is a path
P = {e1, . . . , ek} from y to z which avoids x. Then P ∪ {e, e′} is a cycle containing e.
Consequently, u is nonzero at every interior vertex.
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Now we choose the edge weights. Choose oriented cycles C1, . . . , Ck such that
S =

⋃k
j=1(Cj ∪ Cj). If e ∈ Cj , then e ∈ S and hence e+ and e− are in distinct

components of G \ S, so du(e) = u(e+)− u(e−) 6= 0. For each j, define

wj(e) = wj(e) =

{
1/du(e) for e ∈ Cj ,
0 for e 6∈ Cj ∪ Cj .

Then wj(e)du(e) is 1 on Cj and −1 on Cj and vanishes elsewhere. Therefore, if we let
Lj be the Laplacian associated to the edge-weight function wj , then we have Lju = 0.
For each e ∈ S, there is a weight function wj with wj(e) 6= 0. Since F is infinite and

the graph is finite, we may choose αj ∈ F such that
∑k
j=1 αjwj(e) 6= 0 for all e ∈ S

simultaneously.
Set w = 1E\S +

∑k
j=1 αjwj and let L be the associated Laplacian. Then w(e) 6=

0 for each e. Because u is constant on each component of G \ S, we know that
u(e+)−u(e−) = 0 for each e ∈ E \S. Thus, these edges do not contribute to Lu, and
so

Lu =

k∑
j=1

αjLju = 0.

Thus, (G,L) is the desired degenerate F×-network because 0 6= u ∈ U0(G,L, F ).

We proved equivalent algebraic characterizations for layerability by assigning inde-
terminates to the edges (see Proposition 2.18). The analogue for normalized networks
is as follows.

Definition 7.11. Let G be a ∂-graph and let F be a field. Then R̃ = R̃(G,F ) =
F [t±1e : e ∈ E] will denote the Laurent polynomial algebra over F with generators

indexed by the edges of G. Let L̃ = L̃(G,F ) denote the weighted Laplacian over R̃
given by w̃(e) = te.

Proposition 7.12. Let G be a finite ∂-graph such that each component contains
at least one boundary vertex, and let F be a field. Then (G, L̃) is nondegenerate.

Moreover, Υ̃(G̃, L̃) is a flat R̃-module if and only if every normalized F×-network on
G is nondegenerate.

Proof. To prove that (G, L̃) is nondegenerate, it suffices to prove that each con-

nected component of (G, L̃) is nondegenerate. Therefore, we may assume without loss
of generality that G is connected and has at least one boundary vertex.

Recall that (G, L̃) is nondegenerate if and only if L̃ : R̃V ◦ → R̃V is injective (see

the proof of Proposition 2.11). For our given boundary vertex x, let L̃x : R̃(V \ x)→
R̃(V \x) be the Laplacian L̃, with the domain restricted to chains in R̃(V \x) ⊆ R̃V ,

and with the output truncated by applying the canonical projection R̃V → R̃(V \ x).

Then injectivity of L̃x will imply injectivity of L̃ : R̃V ◦ → R̃V since V \ x ⊇ V ◦ and
V \ x ⊆ ∂V . By the weighted matrix-tree theorem (see [22, Theorem 1] and [28,
Theorem 4.2]), we have

det L̃x =
∑

T∈Span(G)

∏
e∈T

te 6= 0,

where Span(G) denotes the set of spanning trees of G. Since we assumed G is con-

nected, det L̃x is a nonzero polynomial in (te)e∈E and hence is a nonzero element of
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the Laurent polynomial algebra R̃. Since R̃ is an integral domain, it follows that L̃x
is injective. This completes the proof that (G, L̃) is nondegenerate.

The rest of the proof is exactly the same as for Proposition 2.18.

The following theorem is proved the same way as Theorem 5.16.

Theorem 7.13. Let G be a finite ∂-graph such that every component has at least
one boundary vertex. The following are equivalent:

(1) G is completely reducible.
(2) For every ring R, every normalized R×-network on G is nondegenerate.
(3) For every ring R, for every nondegenerate normalized R×-network (G,L) on

the ∂-graph G, Υ̃(G,L) is a free R-module.

(4) There exists an infinite field F such that Υ̃(G, L̃(G,F )) is a flat L̃(G,F )-
module.

(5) There exists an infinite field F such that every normalized F×-network on G
is nondegenerate.

7.4. Boundary-interior bipartitle ∂-graphs. The correspondence between
algebraic and ∂-graph-theoretic conditions in Theorem 7.13 is illustrated by the fol-
lowing proposition about bipartite graphs. We present both an algebraic proof and
an inductive ∂-graph-theoretic proof for comparison. We say a ∂-graph is boundary-
interior bipartite if every edge has one interior endpoint and one boundary endpoint
(similar to Example 2.21).

Proposition 7.14. Suppose that G is a nonempty finite boundary-interior bipar-
tite ∂-graph, |V ◦| ≥ |∂V |, and every interior vertex has degree ≥ 2. Then G is not
completely reducible.

Algebraic proof. Let F be any field other than the field F2 with two elements. We
will construct a degenerate F×-network on G to conlcude that G is not completely
reducible by Theorem 7.13. Since each interior vertex has at least two edges incident
to it and each edge is incident only to one interior vertex, we can choose w : E → F×

such that
∑
e∈E(x) w(e) = 0 for each x ∈ V ◦. If u ∈ 0∂V ×FV ◦ ⊆ FV , then Lu|V ◦ = 0

since

Lu(x) =
∑

e:e+=x

w(e)(u(x)− u(e−)) =
∑

e:e+=x

w(e)u(x) = 0 for all x ∈ V ◦.

Combining this with the fact that imL ⊆ ker ε yields

L(0∂V × FV
◦
) ⊆

{
φ ∈ F ∂V :

∑
x∈∂V

φ(x) = 0

}
× 0V

◦
.

Therefore, dimL(0∂V × FV
◦
) ≤ |∂V | − 1 < |V ◦|, since we assumed |∂V | ≤ |V ◦|.

Therefore, by the rank-nullity theorem,

U0(G,L, F ) = ker(L : FV
◦
→ FV ) 6= 0.

∂-graph-theoretic proof. By Observation 7.9, it suffices to show that G has a sub-
∂-graph which is not completely reducible. We proceed by induction on the number
of vertices.

Since G is nonempty and |V ◦| ≥ |∂V |, G must have at least one interior vertex
x. By assumption x has some neighbor y, and y must be a boundary vertex since the
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∂-graph is boundary-interior bipartite. Therefore, G must have at least one boundary
vertex and one interior vertex. If G has only two vertices, it must have exactly one
interior vertex and one boundary vertex with at least two parallel edges between them.
Then G is irreducible.

Suppose G has n > 2 vertices and divide into cases:
• If G is irreducible, we are done.
• Suppose G has a boundary spike (x, y) with x ∈ ∂V and y ∈ V ◦. Let G′

be the ∂-graph obtained by contracting the space. Then y is a boundary
vertex in G′ and by assumption all its neighbors are boundary vertices in G.
Thus, we can delete the boundary edges incident to y and then delete the
now isolated boundary vertex y to obtain a harmonic sub-∂-graph G′ which
satisfies the original hypotheses. The new ∂-graph G′ is nonempty because
|V (G)| > 2. By inductive hypothesis, G′ is not completely reducible.

• If G can be split apart as a boundary wedge-sum or a disjoint union, then each
piece is boundary-interior bipartite with interior vertices that have degree≥ 2.
Moreover, one of the two subgraphs must have |∂V | ≤ |V ◦| and hence is not
completely reducible by inductive hypothesis.

• G has no boundary edges by assumption. Moreover, if G has an isolated
boundary vertex, that can be treated as a special case of disjoint unions.

8. Network duality.

8.1. Dual circular planar networks, harmonic conjugates. As shown in
[14, Theorem 2], dual planar graphs have isomorphic critical groups. In this section,
we generalize this result to circular planar normalized R×-networks. The theory here
adapts the ideas of duality and discrete complex analysis found in [36, section 2], [16,
section 10], [37]. In this section, all the networks will be normalized (that is, they will
satisfy d = 0).

Definition 8.1. A circular planar ∂-graph G is a (finite) ∂-graph embedded in
the closed unit disk D in the complex plane such that V ∩ ∂D = ∂V . The faces of G
are the components of D \G.

Definition 8.2. A connected circular planar ∂-graph has a circular planar dual
G† defined as follows: The vertices of G† correspond to the faces of G; each vertex of
G† is placed in the interior of the corresponding face of G. The edges of G† correspond
to the edges of G. For each oriented edge e of G, there is a dual edge e† where e†+ cor-

responds to the face on the right of e and e†− corresponds to the face on the left of e. A
vertex of G† is considered a boundary vertex if the corresponding face has a side along
∂D. For further explanation and illustration, see [37, Definition 5.1 and Figure 1].

Remark 8.3. The planar dual is constructed in a similar fashion for a connected
planar network without boundary, and the process is well explained in [36, section
2.1 and Figure 2]. To incorporate planar networks without boundary into the circular
planar framework, we may designate an arbitrary vertex to be a boundary vertex and
embed the ∂-graph into the disk.

Definition 8.4. If (G,L) is a circular planar normalized R×-network, then the
dual network (G†, L†) is the network on G† with w(e†) = w(e)−1. We make the same
definition for planar normalized R×-networks without boundary.

Theorem 8.5. If (G,L) is a connected circular planar normalized R×-network,
then

Υ̃(G†, L†) ∼= Υ̃(G,L).
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The same holds for planar normalized R×-networks without boundary.

Theorem 8.5 generalizes [14, Theorem 2] to R×-networks. Our proof combines
ideas from [8, sections 26–29] and [18, section 7].

Proof. Consider the circular planar case; the proof for planar networks without
boundary is the same. The result follows from reformulating Υ̃ in terms of oriented
edges rather than vertices. Recall that C1(G) is the free R-module on the oriented
edges E modulo the relations e = −e (see section 1.3). Then ker ε can be identified
with the quotient of C1(G) by the submodule generated by oriented cycles. The cycle
submodule is in fact generated by the oriented boundaries of interior faces. Moreover,
L(RV ◦) corresponds to the submodule of C1(G) generated by

∑
e∈E(x) w(e)e. The

edges bounding an interior face of G correspond to the edges incident to an interior
vertex in G†. Therefore,

Υ̃(G,L) ∼=
C1(G)

(
∑
e†∈E(x) e : x ∈ V ◦(G†)) + (

∑
e∈E(x) w(e)e : x ∈ V ◦(G))

,

Υ̃(G†, L†) ∼=
C1(G†)

(
∑
e†∈E(x) w(e†)e† : x ∈ V ◦(G†)) + (

∑
e∈E(x) e

† : x ∈ V ◦(G))
.

Since w(e†) = w(e)−1, we can define an isomorphism Υ̃(G,L) → Υ̃(G†, L†) by e 7→
w(e)−1e†.

Application of Hom(−,M) yields the following discrete-complex-analytic inter-
pretation of network duality, as in [36, section 2], [37, section 7].

Proposition 8.6. Let (G,L) be a circular planar normalized R×-network. Mod-
ulo constant functions, for every M -valued harmonic function u on (G,L), there is
a unique harmonic conjugate v on (G†, L†) satisfying the discrete Cauchy–Riemann

equation w(e)du(e) = dv(e†), where du(e) = u(e+) − u(e−) and dv(e†) = v(e†+) −
v(e†−). Moreover, a function u : V (G) → M is harmonic if and only if there exists
a function v such that w(e)du(e) = dv(e†). The same holds for planar normalized
R×-networks without boundary.

Proof. Given our interpretation of Υ̃(G,L) in the previous proof, a harmonic
function modulo constants is equivalent to a map φ : E(G)→M such that φ(e) sums
to zero around every oriented cycle and

∑
e∈E(x) w(e)φ(e) = 0 for each interior vertex;

the correspondence between u and φ is given by φ(e) = du(e). For every such φ, we
can define a similar function ψ on the dual network by ψ(e†) = w(e)φ(e). This proves
the existence and uniqueness of harmonic conjugates.

Next, we must prove that if u and v satisfy w(e)du(e) = dv(e), then u is harmonic.
But note that for each x ∈ V ◦(G), we have

Lu(e) =
∑
e∈E(x)

w(e)du(e) =
∑
e∈E(x)

dv(e†) = 0

because {e† : e ∈ E(x)} is a cycle in G†. The proof for the case without boundary is
the same.

Proposition 8.7. Let G be a connected circular planar ∂-graph. Then G is com-
pletely reducible if and only if G† is completely reducible.

Proof. By Theorem 7.13, G is completely reducible if and only if for every ring R,
for every normalized R×-network (G,L) on the ∂-graph, Υ̃(G,L) is a free R-module.
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Fig. 8.1. W5 and its (isomorphic) dual. Arrows indicate the paired dual oriented edges.

Clearly, (G,L) 7→ (G†, L†) defines a bijection between R×-networks on G and R×-
networks on G†. Thus, Theorem 8.5 implies that G is completely reducible if and
only if G† is completely reducible.

Remark 8.8. There is a direct combinatorial proof of Proposition 8.7 as well,
which we will merely sketch here. It requires extending the definition of dual to
circular planar ∂-graphs which are disconnected, which is somewhat tricky and tedious
since the dual is not unique; this problem is best dealt with by reformulating it using
medial graphs as in [27]. One can then show that contracting a boundary spike on G
corresponds to deleting a boundary edge in G† and vice versa. A decomposition of G
into a boundary wedge-sum or disjoint union corresponds to a similar decomposition
of G†.

8.2. Wheel graphs. Consider the wheel graph Wn embedded in the complex
plane with vertices at

{
e2πik/n

}
k∈Z and at 0. Edges connect 0 to e2πik/n and e2πik/n

to e2πi(k+1)/n for all k ∈ Z. Figure 8.1 depicts W5 and its planar dual. Note that the
dual of Wn is isomorphic to Wn. We call the vertex 0 the hub and the set of vertices
{e2πik/n} the rim, and we apply the same terminology to W †n. We denote the hub
vertex of W †n by 0†.

The critical group of Wn is computed in [9] using chip-firing, induction, and the
symmetry of the graph, and a connection with Lucas sequences is uncovered. We
present an alternate approach, computing the critical group using harmonic continu-
ation and planar duality.

Proposition 8.9 (see [9, Theorem 9.2]). Let Wn be the wheel graph and let
F0 = 0, F1 = 1, F2 = 1, F3 = 2, . . . be the Fibonacci numbers. Then

Crit(Wn) ∼=

{
Z/(Fn−1 + Fn+1)× Z/(Fn−1 + Fn+1), n odd,

Z/Fn × Z/5Fn, n even.

Proof. By Proposition 2.23(3), Crit(Wn) is isomorphic to the Z-module of Q/Z-
valued harmonic functions which vanish at the hub vertex. This in turn is isomorphic
to the module of Q/Z-valued harmonic functions modulo constants, that is,



ALGEBRAIC PROPERTIES OF GRAPH LAPLACIANS 1103

Crit(Wn) ∼= Ũ(Wn, Lstd,Q/Z).

By Proposition 8.6, it suffices to compute the Z-module of pairs satisfying the Cauchy–
Riemann equation, that is,

{(u, v) ∈ [(Q/Z)V (Wn)/(constants)× (Q/Z)V (W †n)/(constants)] : w(e)du(e) = dv(e†)}.

Instead of working modulo constants, we will normalize our functions so that u and
v vanish at the hub vertices of Wn and W †n, respectively. (The hub vertices are solid
in Figure 8.1). Thus, we want to compute

{(u, v) ∈ [(Q/Z)V (Wn) × (Q/Z)V (W †n)] : u(0) = 0, v(0†) = 0, w(e)du(e) = dv(e†)}.

Let a0, a1, a2, . . . be the values of u or v on the rim vertices of Wn and W †n in counter-
clockwise order as shown in Figure 8.1, with indices taken modulo 2n. The Cauchy–
Riemann equation can be rewritten

aj+1 − aj−1 = aj − 0.

In other words, the numbers aj satisfy the Fibonacci–Lucas recurrence aj+1 = aj +
aj−1, so that (

aj+1

aj

)
=

(
1 1
1 0

)(
aj
aj−1

)
.

This implies that a harmonic pair (u, v) is uniquely determined by (a1, a0). More
precisely, if A is the 2 × 2 matrix of the recursion, then (a1, a0)t ∈ (Q/Z)2 will
produce a harmonic pair (u, v) through the iteration process if and only if it is a fixed
point of A2n. The module of harmonic pairs (u, v) is thus isomorphic to the kernel of
A2n − I acting on (Q/Z)2. So the invariant factors of the critical group are given by
the Smith normal form of A2n − I, which is the same as the Smith normal form of
An −A−n because A is invertible over Z. For n ≥ 1,

An =

(
Fn+1 Fn
Fn Fn−1

)
, A−n = (−1)n

(
Fn−1 −Fn
−Fn Fn+1

)
.

If n is odd, then

An −A−n = (Fn+1 + Fn−1)I,

and if n is even, then

An −A−n =

(
Fn+1 − Fn−1 2Fn

2Fn Fn−1 − Fn+1

)
= Fn

(
1 2
2 −1

)
.

From here, the computation of the invariant factors is straightforward.

Remark 8.10. Johnson [27] in essence developed a system of “discrete analytic
continuation” for harmonic conjugate pairs (u, v). Although we will not do so here,
we believe future research should combine his ideas with the algebraic machinery of
this paper. Such a theory of discrete analytic continuation would have applications
similar to those of Theorem 5.23.
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9. Covering maps and symmetry. The ∂-graphs clf(m,n) (section 3) and
Wn (section 8.2) had a cyclic structure with a natural action of Z/m or Z/n by ∂-graph
automorphisms. In this section, we will sketch potential applications of symmetry in
general, showing how symmetry imposes algebraic constraints on the group structure
of Υ(G,L). In particular, for Z-networks, symmetry yields some information about
the torsion primes of Υ(G,L). For now we shall be brief and not develop a complete
theory. We will merely record a few simple observations for the benefit of future
research.

Recall that covering maps of ∂-graphs were defined in Definition 4.3. We define
a covering map of R-networks in the obvious way; it is an R-network morphism such
that the underlying ∂-graph morphism is a covering map. We say a covering map is
finite-sheeted if |f−1(x)| is finite for every x ∈ V (G) and |f−1(e)| is finite for every
e ∈ E(G). We say f is n-sheeted if |f−1(x)| = n for every x ∈ V (G) and |f−1(e)| = n
for every e ∈ E(G).

We will also the notation

U+
0 (G,L,M) = {u ∈ U(G,L,M) : u|∂V (G) = 0, Lu|∂V (G) = 0}.

This differs from U0(G,L,M) in that we no longer require u to be finitely supported;
however, for finite networks U+

0 (G,L,M) = U0(G,L,M). Moreover, we assume fa-
miliarity with the terminology for the actions of finite groups on sets.

Observation 9.1. Let f : (G̃, L̃)→ (G,L) be a covering map.

(1) As in Lemma 4.9 f induces a surjection Υ(G̃, L̃) → Υ(G,L) providing the
following isomorphism:

Υ(G,L) ∼= Υ(G̃, L̃)

/ ∑
x,y∈V (G)
f(x)=f(y)

R(x− y).

(2) As in Lemma 4.10, there is an injective map f∗ : U(G,L,M) → U(G̃, L̃,M)
given by u 7→ u ◦ f which identifies harmonic functions on (G,L) with har-

monic functions on (G̃, L̃) that are constant on each fiber of f .

(3) Moreover, f∗ restricts to an injective map U+
0 (G,L,M)→ U+

0 (G̃, L̃,M).
(4) If f is finite-sheeted, then f∗ restricts to an injective map U0(G,L,M) →
U0(G̃, L̃,M).

Observation 9.2. Suppose f : (G̃, L̃)→ (G,L) is a finite-sheeted covering map.
(1) Proceeding similarly to Lemma 4.11, we can define a map

f∗ : U(G̃, L̃,M)→ U(G,L,M) : (f∗u)(y) =
∑

x∈f−1(y)

u(x).

(2) Moreover, f∗ restricts to define maps U+
0 (G,L,M)→ U+

0 (G,L,M) and U0(G,
L,M)→ U0(G,L,M).

(3) If f is n-sheeted, then f∗ ◦ f∗u = n · u.
(4) Suppose f is n-sheeted and let M be an R-module. Viewing n as an element

of R via the ring morphism Z → R, we see that multiplication by n defines
an R-module morphism n : M →M . Assume n : M →M is an isomorphism
and let n−1 : M →M denote the inverse map. Then n−1f∗ ◦ f∗ = id. Hence,
f∗ defines a split injection U(G,L,M)→ U(G̃, L̃,M) and

U(G̃, L̃,M) = f∗U(G,L,M)⊕ ker f∗.
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Similarly,

U0(G̃, L̃,M) = f∗U0(G,L,M)⊕ ker f∗|U0(G̃,L̃,M)

and the same holds for U+
0 .

(Compare [6, Lemma 4.1] as well as Maschke’s theorem from representation theory
[20, section 18.1, Theorem 1].)

Observation 9.3. Suppose that K is a group which acts by R-network automor-
phisms on the R-network (G̃, L̃). Assume the action on vertices and edges is free and
that kx 6∼ x for every k ∈ G \ {id} and every x ∈ V .

(1) There exists a quotient network (G,L) = (G̃, L̃)/K and a covering map

f : (G̃, L̃)→ (G,L).

(2) There is a corresponding action of K on U(G̃, L̃,M) given by k · u = k∗u,
where k∗ is defined as in Observation 9.2. The fixed-point submodule of this
action is

U(G̃, L̃,M)K = f∗U(G,L,M).

The same applies with U replaced by U0 or U+
0 .

(3) Suppose K is a finite p-group for some prime p. Then by a standard argument

using the orbits of the K-action on U(G̃, L̃,M), we have

|U(G̃, L̃,M)| ≡ |U(G,L,M)| mod p,

provided both sides are finite (for instance, assuming G̃ and M are finite).
The same holds for U0 and U+

0 .

While these statements hold in general, the mod p counting formula seems espe-
cially useful for the case R = Z. In the following proposition, we make use of the
classification of finitely generated Z-modules (see [20, section 12.1]).

Proposition 9.4. Suppose (G̃, L̃) is a finite nondegenerate Z-network. Suppose

K is a finite p-group which acts by Z-network automorphisms on (G̃, L̃) as in Ob-

servation 9.3, let (G,L) be the quotient network, and let f : (G̃, L̃) → (G,L) be the
projection map.

(1) The Z-network (G,L) is finite and nondegenerate.

(2) The generalized critical group Υ(G̃, L̃) has nontrivial p-torsion if and only if
Υ(G,L) has nontrivial p-torsion.

(3) Let q be a prime distinct from p and let k ∈ Z. Then

U0(G̃, L̃,Z/qk) = f∗U0(G,L,Z/qk)⊕Mqk ,

where Mqk := ker f∗|U0(G̃,L̃,Z/qk).
(4) For q 6= p, the action of K on Mqk has no fixed points other than zero and in

particular |Mqk | ≡ 1 mod p.

Proof. (1) G is finite because it is the quotient of a finite network. Moreover,

f∗ defines an injective map U0(G,L,Z) → U0(G̃, L̃,Z), and U0(G̃, L̃,Z) = 0 because

(G̃, L̃) is nondegenerate. Hence, (G,L) is nondegenerate.
(2) Because both networks are nondegenerate, Proposition 2.11 shows that

Tor1(Υ(G̃, L̃),Z/p) ∼= U0(G̃, L̃,Z/p)
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and the same holds for (G,L). On the other hand, by Observation 9.3(3), we have

|U0(G̃, L̃,Z/p)| ≡ |U0(G,L,Z/p)| mod p.

Each of the two Z-modules in this equation either is zero (hence has cardinality one
mod p) or else has cardinality zero mod p. This implies (2).

(3) Note that f is a |K|-sheeted covering map. Since |K| is a power of p, multi-
plication by |K| acts as an isomorphism on Z/qk. Therefore, claim (3) follows from
Observation 9.2(4).

(4) It follows from (3) and Observation 9.3(2) that zero is the only fixed point of
the K-action on Mqk . Since K is a p-group, we thus have |Mqk | ≡ 1 mod p.

Example 9.5. Consider the networks clf(m,n) from section 3. There is an obvi-
ous translation action of Z/k on clf(km, n) with the quotient clf(m,n). The cov-
ering map clf(km, n)→ clf(m,n) induces an inclusion U0(clf(m,n), Lstd,Q/Z)→
U0(clf(km, n), Lstd,Q/Z). Note that when k is a power of 2, Proposition 9.4(2)
holds because U0(clf(m,n),Z/2`) is nontrivial for all m ≥ 2 and n ≥ 1 by Theorem
3.1. Moreover, for odd integers k, we have U0(clf(m,n),Z/k) = 0 for all m, so (2)
also holds when k is an odd prime power. One can verify that the other claims in
Proposition 9.4 also hold rather vacuously in the case of clf(m,n) as well.

Remark 9.6. Though Proposition 9.4 falls far short of computing Υ(G̃, L̃) from
Υ(G,L), it nonetheless gives a significant amount of information, especially in parts
(3) and (4). Indeed, one can argue from the classification of finite Z-modules that

the q-torsion component of Υ(G̃, L̃) is uniquely determined up to isomorphism by the

quantities |Tor1(Υ(G̃, L̃),Z/qk)| for k = 0, 1, . . . . Moreover, by (3)

|Tor1(Υ(G̃, L̃),Z/qk)| = |U0(G,L,Z/qk)| · |Mqk |.

By (4), we know |Mqk | is a power of q which equals 1 mod p and that the group
K acts by automorphisms on Mqk with no nontrivial fixed points. This narrows
down the possibilities for |Mqk |, especially when combined with other information
such as bounds on the number of invariant factors for the torsion part of Υ(G,L)

from Corollary 5.26 or bounds on the size of Tor1(Υ(G̃, L̃),Q/Z) obtained through
determinantal computations.

As stated, Proposition 9.4 does not yield optimal information for the case of
graphs without boundary and the critical group since it relies on nondegeneracy. The
simplest way to handle this problem is by considering ∂-graphs with one boundary
vertex (see Proposition 2.23) and allowing this boundary vertex to be a branching
point in our covering map.

Definition 9.7. Let G̃ and G be ∂-graphs with exactly one boundary vertex each,
called x̃ and x, respectively. A pseudo-covering map f : G̃→ G is a ∂-morphism such
that f is surjective on the vertex and edge sets, f maps x̃ to x, f maps interior vertices
to interior vertices, f maps edges to edges, and deg(f, y) = 1 for every y ∈ V (G̃)\{x̃}.

The foregoing observations all adapt to pseudo-covering maps for normalized R-
networks (and in particular apply to critical groups). The verifications are straightfor-
ward once we make the following observation: Let G be a ∂-graph with a single vertex
x and let L be a weighted Laplacian (recall this means d = 0). If u : V →M satisfies
Lu(y) = 0 for all y 6= x, then it also satisfies Lu(x) = 0 because

∑
y∈V (G) Lu(y) = 0.
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Example 9.8. Let Wn be the wheel graph from section 8.2 where 0 is considered
a boundary vertex. For any k ∈ N, there is a group action of Z/k on Wkn by rotation
and a corresponding quotient map Wkn → Wn which is a pseudo-covering map. By
combining the results from section 8.2 with the results from this section, we obtain the
following information about the q-torsion components of Crit(Wn) for each prime q:

(1) The q-torsion component has at most two invariant factors. Indeed, the har-
monic continuation argument in Proposition 8.9 showed that U0(Wn, Lstd,
Q/Z) is isomorphic to the submodule of (Q/Z)2 consisting of fixed points of
A2n. A submodule of (Q/Z)2 can have at most two invariant factors. Since
U0(Wn,
Lstd,Q/Z) has at most two invariant factors, so does its q-torsion compo-
nent.

(2) For every k, there exists some n such that U0(Wn, Lstd,Z/qk) ∼= (Z/qk)2. To
prove this, it suffices to show that every φ ∈ (Z/qk)2 will be a fixed point of
A2n for some n. Note that A maps (Z/qk)2 into itself and (Z/qk)2 is finite,
so there must exist two distinct integers k and ` with A2kφ = A2`φ. Since A
is invertible over Z, we have A2(k−`)φ = φ, so we can take n = k − `.

(3) If q is a prime other than 5, then we know from Proposition 8.9 that the q-
torsion component of Crit(Wn) has the form (Z/qk)2 for some k. Moreover,
the 5-torsion component has the form (Z/5k)2 for odd n and Z/5k × Z/5k+1

for even n.
(4) If m|n, then there is a pseudo-covering map Wm → Wn and hence by Ob-

servation 9.1(4), we can identify the q-torsion component of Crit(Wn) with a
submodule of the q-torsion component for Crit(Wm).

(5) Suppose n is such that the q-torsion component Crit(Wn) has two invariant
factors, and let p be a prime other than q. Then Crit(Wpn) has the same
q-torsion submodule as Crit(Wn). Indeed, multiplication by p acts as an
isomorphism on Z/qk. Thus, by Proposition 9.4(3), we have

U0(Wpn, Lstd,Z/qk) ∼= U0(Wn, Lstd,Z/qk)⊕Mqk .

We know that U0(Wn, Lstd,Z/qk) has two invariant factors, while U0(Wpn, Lstd,Z/qk)
has at most two invariant factors. This implies that Mqk = 0 and hence

U0(Wpn, Lstd,Z/qk) ∼= U0(Wn, Lstd,Z/qk).

Since this holds for all k, the q-torsion components of Crit(Wpn) and Crit(Wn) are
isomorphic.

10. Open problems. Much like the critical group, the fundamental module Υ
connects ideas from network theory, combinatorics, algebraic topology, homological al-
gebra, and complex analysis. We have correlated the algebraic properties of Υ with the
combinatorial properties of ∂-graphs, including ∂-graph morphisms, layer-stripping,
boundary wedge-sums, duality, and symmetry and we have given applications to the
critical group and Laplacian eigenvalues. Our results lead to the following questions.

Question 1. Do our algebraic invariants extend to higher-dimensional cell com-
plexes, along the lines of [21]? Do they generalize to directed graphs? What are the
analogues of ∂-graph morphisms and layer-stripping in these settings?

Question 2. Can the techniques developed here (particularly Theorem 5.23) aid
the computation of previously intractable sandpile groups? What applications do they
have for computing eigenvectors and characteristic polynomials?
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Remark 10.1. The layer-stripping process is similar to the inductive construction
of threshhold graphs by adding isolated vertices and vertices connected to all the pre-
ceding ones (see [12, Definition 3]). However, we were not able to find an application
of our theory to threshhold graphs that would simplify the computation of critical
groups.

Question 3. Corollaries 5.27 and 5.30 used layer-stripping to give a bound on
the number of invariant factors for Crit(G) and the multiplicity of eigenvalues. How
sharp is this bound for general graphs? For a graph without boundary, is there an
algebraic characterization of the minimal number of boundary vertices one has to
assign to achieve layerability? What is the most efficient algorithm for finding a
choice of boundary vertices that achieves this minimal number?

Question 4. Are there other operations on ∂-graphs which interact nicely with
Υ and with ∂-graph morphisms? Can such operations be used to compute Υ or at
least produce short exact sequences? See Remark 5.9 and [34, Proposition 2], [41,
Proposition 21].

Question 5. We have studied algebraic invariants which test layerability (Theo-
rem 5.16). Are there algebraic invariants of ∂-graphs which test whether the electrical
inverse problem can be solved by layer-stripping?

Question 6. Do Theorems 5.16 and 7.13 extend to infinite ∂-graphs? In partic-
ular, for a fixed infinite graph G, if Υ(G,L) is flat for all unit edge-weight functions
w, must Υ(G,L) also be free for all unit edge-weight functions?

Question 7. Determine the Z-module of Q/Z-harmonic functions supported in
a given subset of the Z2 lattice. Applying Lemma 3.6 to clf(∞, n) resolves the case of
a diagonal strip with sides parallel to the lines y = ±x. An argument using harmonic
continuation shows that these are the only strips with a nonzero answer.

Question 8. Can the techniques of section 3 be modified to handle ∂-graphs built
from the triangular or hexagonal lattice rather than the rectangular lattice?
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