Basis for Kernel and Image

David Jekel

February 2, 2016
[Relevant to midterm 1 question 2]
Consider the matrix

$$
A=\left(\begin{array}{lllll}
1 & 3 & 0 & 1 & 3 \\
2 & 6 & 1 & 1 & 4 \\
1 & 3 & 1 & 0 & 5
\end{array}\right)
$$

1. Find the RREF of A.
2. Which columns have pivots? Which columns represent free variables?

3 . Why is the kernel of A the same as the kernel of $\operatorname{RREF}(A)$?
4. The kernel of $\operatorname{RREF}(A)$ contains two vectors of the form

$$
\left(\begin{array}{c}
* \\
1 \\
* \\
0 \\
*
\end{array}\right) \text { and }\left(\begin{array}{c}
* \\
0 \\
* \\
1 \\
*
\end{array}\right) .
$$

Find these two vectors. Call them \vec{v}_{1} and \vec{v}_{2}.
5. Suppose that \vec{x} is in the kernel of $\operatorname{RREF}(A)$. Show that $\vec{x}=x_{2} \vec{v}_{1}+x_{4} \vec{v}_{2}$.
6. Show that \vec{v}_{1} and \vec{v}_{2} are linearly independent (you want to show that if $a \vec{v}_{1}+b \vec{v}_{2}=\overrightarrow{0}$, then a and b must both be zero).
7. You have just proved that \vec{v}_{1} and \vec{v}_{2} are a basis for the kernel of A. Explain.
8. What is the dimension of the kernel of A ? What is the dimension of the image of A ? Verify that the rank-nullity theorem is true in this case.
9. Show that columns 1,3 , and 5 of A form a basis for the image of A.
10. What is the image of A (besides being the span of these three vectors)?
11. Challenge: Write a description in your own words of how to find a basis for the kernel and image of matrix A in general. Why does it work?

