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July 25, 2019

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 1 / 37



Introduction

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 2 / 37



Non-Commutative Probability

In classical probability, a bounded real random variable X can be
thought of as a bounded self-adjoint operator, namely as a
multiplication operator on L

2(Ω,P).

In non-commutative probability, the algebra L
∞(Ω,P) of bounded

random variables is replaced by a possibly non-commutative operator
algebra A, and the expectation is positive, unital map E ∶ A→ C.
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Non-Commutative Probability

Non-commutative probability studies the central limit theorem,
Brownian motion, processes with independent increments, etc.
associated to different types of independence.

Muraki (2001), building on work of Speicher, showed that for NC
variables, there are five types of independence satisfying certain
axioms; they are tensor, free, boolean, monotone, and anti-monotone
independence.
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Non-Commutative Probability

The Cauchy transform GX (z) = E[(z −X )−1] as well as its reciprocal
FX (z) = 1/GX (z) play an important role in non-commutative
probability like the Fourier transform in classical probability (e.g.
R-transform, analytic subordination).

Given a process (Xt) with independent increments, we want to
understand the evolution of the FXt

through a differential equation.

Loewner chains from complex analysis are relevant here.
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Chordal Loewner Chains

Definition

A normalized chordal Loewner chain on [0,T ] is a family of analytic
functions Ft ∶ H→ H such that

F0(z) = z .

The Ft ’s are analytic in a neighborhood of ∞.

If Ft(z) = z + t/z + O(1/z2).

For s < t, we have Ft = Fs ◦ Fs,t for some Fs,t ∶ H→ H.

Fact

The Ft ’s are conformal maps from H onto H \ Kt , where Kt is a growing
compact region touching the real line, e.g. a growing slit.
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Loewner Chains and Monotone Probability

Theorem (Muraki 2000-2001)

If X and Y are monotone independent, then FX+Y = FX ◦ FY .

Observation (Schleißinger 2017)

If Xt is a process with monotone independent increments, and if
E(Xt) = 0 and E(X 2

t ) = t, then Ft(z) = 1/GXt
(z) is a normalized chordal

Loewner chain. Every normalized Loewner chain arises in this way.

Hasebe (2010) studied the evolution equation for processes with monotone
independent and stationary increments, but as Schleißinger realized, this
was a special case of the older chordal Loewner equation . . .
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The Loewner Equation

Theorem (Bauer 2005)

Every normalized Loewner chain satisfies the generalized Loewner equation

∂tFt(z) = DzFt(z) ⋅ V (z , t)

where V (z , t) is some vector field of the form V (z , t) = −Gνt(z).
Conversely, given such a vector field, the Loewner equation has a unique
solution.

History

Loewner chains in the disk were studied by Loewner in 1923 in the case Ft
maps D onto D minus a slit. Kufarev and Pommerenke considered more
general Loewner chains in the disk. Loewner chains in the half-plane were
studied by Schramm in the case V (z , t) = −1/(z − Bt) where Bt is a
Brownian motion (SLE, 1980’s).
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Overview

Goal

Study the operator-valued version of Loewner theory, and prove
operator-valued analogues of the above results of Bauer and Schleißinger.

Talk Overview:

1 Background on operator-valued probability.

2 Operator-valued chordal Loewner equation for Ft = FXt
.

3 Realization of monotone increment processes on a Fock space and
application to CLT (if time).
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Operator-valued Non-commutative Probability
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B-valued Probability Spaces

Definition

Let B be a C
∗

-algebra. An B-valued probability space (A,E) is a C
∗

algebra A ⊇ B together with a completely positive, unital, B-bimodule
map E ∶ A→ B, called the expectation.

Definition

The B-valued law of a self-adjoint random variable X in A is the induced
map from B⟨X ⟩ (non-commutative polynomials over B) to B given by
p(X )↦ E(p(X )).
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Notation / Facts

Fact

There are axioms to characterize the maps µ ∶ B⟨X ⟩→ B which can be
realized as the law of some random variable. Specifically, it is a completely
positive map with exponentially bounded moments which satisfies
µ∣B = id.

Definition

A generalized law σ ∶ B⟨X ⟩→ B is completely positive map with
exponentially bounded moments (analogous to a measure that is not a
probability measure).

“Definition”

We denote by rad(σ) the norm of the associated operator, which is
analogous to the radius of the support of a measure.
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Matricial Upper Half-Plane

The B-valued Cauchy transform GX (z) = E[(z − X )−1] should be
understood as a fully matricial (non-commutative) function on the
matricial upper half-plane (J.L. Taylor, D. Voiculescu, M. Popa, V.
Vinnikov, J. Williams, . . . ).

Definition

Denote Re x = (x + x
∗)/2 and Im x = (x − x

∗)/2i .

Definition

The matricial upper half-plane is defined by

H(n)(B) =⋃
ε>0

{z ∈ Mn(B) ∶ Im z ≥ ε}

H(B) = {H(n)(B)}n≥1.
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Cauchy Transforms

Definition

A fully matricial function on H(B) is a sequence of functions

F
(n) ∶ H(n)(B)→ Mn(B) such that F preserves direct sums of matrices

and conjugation by scalar matrices, together with a local boundedness
condition which is uniform in n.

(These functions are automatically
analytic.)

Definition (Voiculescu)

The Cauchy transform of a generalized law µ is defined by

G
(n)
µ (z) = µ⊗ idMn(C)[(z − X ⊗ 1Mn(C))−1]. This is a fully matricial

function on H(B).

Fact

There is an analytic characterization of B-valued Cauchy transforms due
to [Williams 2013, Williams-Anshelevich 2015].
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B-valued Chordal Loewner Chains
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Definition

Definition

A Lipschitz, normalized B-valued chordal Loewner chain on [0,T ] is a
family of matricial analytic functions Ft(z) = F (z , t) on H(B) such that

F0 = id

Ft is the recriprocal Cauchy transform of an B-valued law µt .

If s < t, then Ft = Fs ◦ Fs,t for some matricial analytic
Fs,t ∶ H(B)→ H(B).

µt(X ) = 0 and µt(X 2) is Lipschitz in t.
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Basic Properties

Remark

Loewner chains relate to monotone independence over B just as in the
scalar case.

Lemma

Fs,t is unique.

F0,t = Ft .

Fs,t ◦ Ft,u = Fs,u.

Fs,t is the F -transform of a law µs,t .

sups,t rad(µs,t) ≤ C rad(µT ).
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Basic Properties

Lemma

There exists a generalized law σs,t such that

Fs,t(z) = z − Gσs,t(z).

We have rad(σs,t) ≤ rad(µs,t) and σs,t(1) = µs,t(X 2) = µt(X 2)−µs(X 2).

Proposition

Each Ft is a biholomorphic map onto a fully matricial domain and the
inverse is fully matricial.
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The Loewner Equation?

The operator-valued version of the Loewner equation is

∂tF (z , t) = DF (z , t)[V (z , t)],

where DF (z , t) is the Fréchet derivative with respect to z (also
known as ∆Ft(z , z) in the NC function theory),

and where V (z , t) is
a vector field of the form V (z , t) = −Gνt(z) for a generalized law νt
(called a Herglotz vector field).

We want to show that the Loewner equation defines a bijection
between Loewner chains F (z , t) and Herglotz vector fields V (z , t) on
[0,T ].
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Problems with Pointwise Differentiation

We should allow Loewner chains which are merely Lipschitz in t, so
we need to differentiate Lipschitz functions [0,T ]→ Mn(B).

Pointwise differentiation won’t work because a C
∗

-algebra B is a bad
Banach space for differentiation (often not reflexive or separable).

So consider ∂tF (z , ⋅) as an Mn(B)-valued distribution on [0,T ].
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Distributional Differentiation

But we need to manipulate ∂tF (z , ⋅) like a pointwise defined
function, e.g. we want to have the chain rule:

∂t[F (G(z , t), t)] = ∂tF (G(z , t), t) + DF (G(z , t), t)[∂tG(z , t)].

Luckily, since F
(n)(z , ⋅) is Lipschitz, it makes sense to pair

∂tF
(n)(z , ⋅) with any L

1
function φ ∶ [0,T ]→ C. That is, we can

make sense of the expression

∫
T

0
F (z , t)φ(t) dt.

Thus, ∂tF
(n)(z , t) is an element of L(L1[0,T ],Mn(B)), which is

“almost as nice” as an L
∞

function [0,T ]→ Mn(B).
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∂t[F (G(z , t), t)] = ∂tF (G(z , t), t) + DF (G(z , t), t)[∂tG(z , t)].
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(n)(z , ⋅) is Lipschitz, it makes sense to pair

∂tF
(n)(z , ⋅) with any L

1
function φ ∶ [0,T ]→ C. That is, we can
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T

0
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Distributional Differentiation

A family of Banach-valued analytic functions F (z , t) for t ∈ [0,T ] is
a called a locally Lipschitz family if it is Lipschitz in t with uniform
Lipschitz constants for z in a neighborhood of each z0 in the domain.

If F (z , t) and G(z , t) are locally Lipschitz families, then we can
define the composition

∂tF (G(z , t), t) ∈ L(L1[0,T ],X )

by approximating G(z , t) with step-functions of t.

We can define DF (G(z , t), t)[∂tG(z , t)] similarly.

The chain rule computation above is correct in L(L1[0,T ],X ).
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The Loewner Equation: Setup

We need to allow our Herglotz vector field V (z , t) to depend on t in this
distributional sense.

Definition

A distributional Herglotz vector field V (z , t) to be a matricial analytic
function H(B)→ L(L1[0,T ],Mn(B)) such that for each nonnegative
φ ∈ L

1[0,T ], the function − ∫ V (z , t)φ(t) dt is the Cauchy transform of
a generalized law νφ with supφ rad(νφ) < +∞.

Definition

In this case, we call the map ν ∶ B⟨X ⟩ × L
1[0,T ]→ B a distributional

family of generalized laws and denote rad(ν) = supφ≥0 rad(νφ). We also

denote νφ = ∫T0 ν(⋅, t)φ(t) dt.

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 23 / 37



The Loewner Equation: Setup

We need to allow our Herglotz vector field V (z , t) to depend on t in this
distributional sense.

Definition

A distributional Herglotz vector field V (z , t) to be a matricial analytic
function H(B)→ L(L1[0,T ],Mn(B)) such that for each nonnegative
φ ∈ L

1[0,T ], the function − ∫ V (z , t)φ(t) dt is the Cauchy transform of
a generalized law νφ with supφ rad(νφ) < +∞.

Definition

In this case, we call the map ν ∶ B⟨X ⟩ × L
1[0,T ]→ B a distributional

family of generalized laws and denote rad(ν) = supφ≥0 rad(νφ). We also

denote νφ = ∫T0 ν(⋅, t)φ(t) dt.

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 23 / 37



The Loewner Equation: Setup

We need to allow our Herglotz vector field V (z , t) to depend on t in this
distributional sense.

Definition

A distributional Herglotz vector field V (z , t) to be a matricial analytic
function H(B)→ L(L1[0,T ],Mn(B)) such that for each nonnegative
φ ∈ L

1[0,T ], the function − ∫ V (z , t)φ(t) dt is the Cauchy transform of
a generalized law νφ with supφ rad(νφ) < +∞.

Definition

In this case, we call the map ν ∶ B⟨X ⟩ × L
1[0,T ]→ B a distributional

family of generalized laws and denote rad(ν) = supφ≥0 rad(νφ). We also

denote νφ = ∫T0 ν(⋅, t)φ(t) dt.

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 23 / 37



The Loewner Equation: Main Theorem

Theorem

On an interval [0,T ], the Loewner equation
∂tF (z , t) = DF (z , t)[V (z , t)] defines a bijection between Lipschitz,
normalized B-valued Loewner chains and distributional Herglotz vector
fields (and hence distributional generalized laws).

Now that all the machinery has been set up, the proof proceeds exactly as
Bauer did in the scalar case. Specifically,

To construct the Herglotz vector field from the Loewner chain, we
show that the distributional time derivative has the correct form using
some step function approximation arguments.

To construct the Loewner chain from the Herglotz vector field, we
can reverse time to convert the problem to an ODE, then solve it
with Picard iteration and make explicit estimates for convergence.
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Fock Space Construction
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Fock Space Construction

Let C = C([0,T ],B). For a distributional family of generalized laws ν on
[0,T ], define I = Iν ∶ C⟨X ⟩→ C by

Iν[f (X , t)](t) = ∫
T

t
ν(f (X , s), s) ds.

We define a Fock space Hν =⨁∞
n=0Hn, where

Hn = C⟨X ⟩⊗ ⋅ ⋅ ⋅ ⊗ C⟨X ⟩⊗ C

with the C-valued inner product

⟨fn ⊗ ⋅ ⋅ ⋅ ⊗ f0, gn ⊗ ⋅ ⋅ ⋅ ⊗ g0⟩ = f
∗
0 Iν(f ∗1 . . . Iν(f ∗n gn) . . . g1)g0.
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Fock Space Construction

For f (X , t) ∈ C⟨X ⟩, define the creation operator `(f ) by

`(f )[fn ⊗ ⋅ ⋅ ⋅ ⊗ f0] = f ⊗ fn ⊗ ⋅ ⋅ ⋅ ⊗ f0.

The annihilation operator `(f )∗ is given by `(f )∗f0 = 0 for f0 ∈ C and
otherwise

`(f )∗[fn ⊗ ⋅ ⋅ ⋅ ⊗ f0] = I (f ∗fn)fn−1 ⊗ ⋅ ⋅ ⋅ ⊗ f0.

Every f (X , t) ∈ C⟨X ⟩ defines a multiplication operator acting on the
left-most coordinate, where the action on H0 = C is defined to be
multiplication by f (0, t).
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Fock Space Construction

Theorem

Let Yt1,t2 = `(χ[t1,t2)) + `(χ[t1,t2))
∗ + χ[t1,t2)(t)X . Define a B-valued

expectation by
E(T ) = ⟨Ω,TΩ⟩Hν

∣t=0.
Then

1 Yt1,t3 = Yt1,t2 + Yt2,t3 .

2 Yt1,t2 and Yt2,t3 are monotone independent over B with respect to E .

3 Yt1,t2 has the law µt1,t2 with respect to E .
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Central Limit Theorem for Loewner Chains
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Background for CLT

Muraki showed that the central limit object for monotone
independence is the arcsine law.

The arcsine law of variance t has reciprocal Cauchy transform

Ft(z) =
√
z2 − 2t which maps H onto H minus a vertical slit.

Ft solves the Loewner equation with V (z , t) = −1/z .

Definition

Let η ∶ B × L
1[0,T ]→ B be a distributional family of completely positive

maps. We define the corresponding B-valued generalized arcsine law µη as
the law obtained by running the Loewner equation up to time T with
V (z , t) = −ηt(z−1).
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CLT via Coupling

Let ν be a distributional generalized law and let ηt = νt∣B. Using the Fock
space Hν , define

Yt1,t2 = `(χ[t1,t2)) + `(χ[t1,t2))
∗ + χ[t1,t2)(t)X .

Zt1,t2 = `(χ[t1,t2)) + `(χ[t1,t2))
∗

.

Let Ft = Fµt be the solution to the Loewner equation for −Gνt(z).

Theorem

Yt1,t2 has the law µt1,t2 and Zt1,t2 has the generalized arcsine law for
η∣[t1,t2]. Moreover, we have

∥Yt1,t2 − Zt1,t2∥ ≤ rad(ν).

As a consequence, for Im z ≥ ε,

∥T 1/2
GY0,T

(T 1/2
z) − T

1/2
GZ0,T

(T 1/2
z)∥ ≤ T

−1/2
ε
−2

rad(ν).
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CLT via Loewner Equation

Another proof for the CLT is a“continuous-time Lindeberg exchange”
where we interpolate between Y0,T and Z0,T using Y0,t + Zt,T . In other
words, we write

GY0,T
− GZ0,T

= ∫
T

0
∂t[GY0,t

◦ FZt,T
] dt.

Evaluate this using the chain rule and the Loewner equation and make
some straightforward estimates . . .

Theorem

For Im z ≥ ε, we have

∥T 1/2
GY0,T

(T 1/2
z) − T

1/2
GZ0,T

(T 1/2
z)∥

≤ T
−1/2

ε
−4

rad(ν)∥ν(1)∥L(L1[0,T ],B).
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Concluding Remarks
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Concluding Remarks

For the other types of independence, you also get differential equations for
(sufficiently regular) processes with independent increments:

Free: ∂tF (z , t) = DF (z , t)[V (F (z , t), t)].

Monotone: ∂tF (z , t) = DF (z , t)[V (z , t)].

Anti-monotone: ∂tF (z , t) = V (F (z , t), t).

Boolean: ∂tF (z , t) = V (z , t).

This results in a “Bercovici-Pata bijection” for processes with independent
(non-stationary) increments, where the processes with the same V (z , t)
correspond to each other.

This extends the usual BP bijection for infinitely divisible laws (≅
processes with independent and stationary increments).

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 34 / 37



Concluding Remarks

For the other types of independence, you also get differential equations for
(sufficiently regular) processes with independent increments:

Free: ∂tF (z , t) = DF (z , t)[V (F (z , t), t)].

Monotone: ∂tF (z , t) = DF (z , t)[V (z , t)].

Anti-monotone: ∂tF (z , t) = V (F (z , t), t).

Boolean: ∂tF (z , t) = V (z , t).

This results in a “Bercovici-Pata bijection” for processes with independent
(non-stationary) increments, where the processes with the same V (z , t)
correspond to each other.

This extends the usual BP bijection for infinitely divisible laws (≅
processes with independent and stationary increments).

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 34 / 37



Concluding Remarks

For the other types of independence, you also get differential equations for
(sufficiently regular) processes with independent increments:

Free: ∂tF (z , t) = DF (z , t)[V (F (z , t), t)].

Monotone: ∂tF (z , t) = DF (z , t)[V (z , t)].

Anti-monotone: ∂tF (z , t) = V (F (z , t), t).

Boolean: ∂tF (z , t) = V (z , t).

This results in a “Bercovici-Pata bijection” for processes with independent
(non-stationary) increments, where the processes with the same V (z , t)
correspond to each other.

This extends the usual BP bijection for infinitely divisible laws (≅
processes with independent and stationary increments).

David A. Jekel (UCLA) Operator-valued Loewner Chains IWOTA 2019 34 / 37



Concluding Remarks

The Fock space constructions, and their application to CLT, adapt to free
and Boolean independence also, with similar but easier proofs.

Actually, the coupling argument for non-commutative CLT works in much
greater generality and doesn’t require a continuous-time process. See joint
work with W. Liu on “An Operad of Non-commutative Independences
Defined by Trees.”
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Concluding Questions

Question

How well do these techniques adapt to operator-valued laws with
unbounded support?

Question

Can every reciprocal B-valued Cauchy transform which is matricially
biholomorphic be embedded into a Loewner chain? (Yes in scalar case,
Bauer 2005.)

Question

Is there a version of the Riemann mapping theorem for matricial domains?
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