Orthogonal Stuff

David Jekel

February 8, 2016

This worksheet was made for UCLA Math 33A Winter 2016 with Omer Ben Neria; it covers material related to Sections 5.1 and 5.2 of Otto Bretscher's Linear Algebra with Applications.

Part 1: Gram-Schmidt Computation

Define

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)
$$

a. Compute $\vec{u}_{1}=\vec{v}_{1} /\left\|\vec{v}_{1}\right\|$.
b. Compute $\vec{w}_{2}=\vec{v}_{2}-\left(\vec{v}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}$.
c. Make sure \vec{w}_{2} is orthogonal to \vec{u}_{1}. Why does this happen?
d. Compute $\vec{u}_{2}=\vec{w}_{2} /\left\|\vec{w}_{2}\right\|$.
e. Compute $\vec{w}_{3}=\vec{v}_{3}-\left(\vec{v}_{3} \cdot \vec{u}_{1}\right) \vec{u}_{1}-\left(\vec{v}_{3} \cdot \vec{u}_{2}\right) \vec{u}_{2}$.
f. Verify that \vec{w}_{2} is orthogonal to \vec{u}_{1} and \vec{u}_{2}.
g. Compute $\vec{u}_{3}=\vec{w}_{3} /\left\|\vec{w}_{3}\right\|$.
h. Verify directly that \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} are orthonormal (that is, they are unit vectors that are perpendicular to each other). If they are not orthonormal, then check your computations for fraction and square-root errors!

Part 2: Thinking about Gram-Schmidt

a. Show that

$$
\begin{aligned}
\operatorname{span}\left(\vec{u}_{1}\right) & =\operatorname{span}\left(\vec{v}_{1}\right) \\
\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}\right) & =\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right) \\
\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right) & =\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right) .
\end{aligned}
$$

b. What orthonormal basis would you get if you applied Gram-Schmidt to $\vec{v}_{3}, \vec{v}_{2}, \vec{v}_{1}$ (in that order) instead of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$?
c. Why are there square roots in the \vec{u}_{j} 's, but not the \vec{w}_{j} 's?
d. If \vec{x} is a nonzero vector and c is a positive number, then $(c \vec{x}) /\|c \vec{x}\|=\vec{x} /\|\vec{x}\|$. How might this save you time in the Gram-Schmidt computations?

Part 3: $Q R$ Factorization

a. Verify that

$$
\vec{v}_{1}=\left\|\vec{v}_{1}\right\| \vec{u}_{1}, \quad \vec{v}_{2}=\vec{w}_{2}+\left(\vec{v}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}=\left(\vec{v}_{2} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\left\|\vec{w}_{2}\right\| \vec{u}_{2} .
$$

b. Find a similar formula for \vec{v}_{3}, directly from the definition of \vec{w}_{3} and \vec{u}_{3}.
c. Show that the equations

$$
\begin{aligned}
& \vec{v}_{1}=r_{1} \vec{u}_{1} \\
& \vec{v}_{2}=s_{1} \vec{u}_{1}+s_{2} \vec{u}_{2} \\
& \vec{v}_{3}=t_{1} \vec{u}_{1}+t_{2} \vec{u}_{2}+t_{3} \vec{u}_{3}
\end{aligned}
$$

can be rewritten as

$$
\left(\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right)=\left(\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right)\left(\begin{array}{ccc}
r_{1} & s_{1} & t_{1} \\
0 & s_{2} & t_{2} \\
0 & 0 & t_{3}
\end{array}\right) .
$$

d. Plug in the specific vectors and numbers from the example in part 1 to get a $Q R$ factorization of the matrix $\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$.

Part 4: Projection

a. Let $V=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)=\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}\right)$. What is the orthogonal projection of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
b. If \vec{x} is any vector, show that

$$
\left(\vec{u}_{1} \cdot \vec{x}\right) \vec{u}_{1}+\left(\vec{u}_{2} \cdot \vec{x}\right) \vec{u}_{2}=\vec{u}_{1} \vec{u}_{1}^{T} \vec{x}+\vec{u}_{2} \vec{u}_{2}^{T} \vec{x} .
$$

c. Let P be the matrix of projection onto V. Show that

$$
P=\vec{u}_{1} \vec{u}_{1}^{T}+\vec{u}_{2} \vec{u}_{2}^{T}=\left(\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2}
\end{array}\right)\left(\begin{array}{ll}
\vec{u}_{1} & \vec{u}_{2}
\end{array}\right)^{T} .
$$

d. Compute P for this specific example. If you want, verify that the formulas in part (b) and (c) are true for this specific P.
e. Show directly from part (c) that $P \vec{u}_{1}=\vec{u}_{1}, P \vec{u}_{2}=\vec{u}_{2}, P \vec{u}_{3}=0$.
f. Directly from the equations in part (e), show that

$$
P\left(\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right)=\left(\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and hence

$$
P=\left(\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right)^{-1} .
$$

g. Deduce that all projections onto planes in \mathbb{R}^{3} are similar to each other.
h. Suppose that some matrix A satisfies $A \vec{u}_{1}=\vec{u}_{1}, A \vec{u}_{2}=\vec{u}_{2}, A \vec{u}_{3}=0$. Show that A also satisfies the equations in part (e) and conclude that $A=P$.
i. Conclude that P is the unique matrix that satisfies

$$
\begin{aligned}
& P \vec{w}=\vec{w} \text { for } \vec{w} \in V \\
& P \vec{w}=\overrightarrow{0} \text { for } \vec{w} \in V^{\perp} .
\end{aligned}
$$

j. How would you change the answers if V were a line instead of a plane? Is the projection onto a line similar to the projection onto a plane?

