Eigenvalues and Eigenvectors

David Jekel

February 23, 2016

Note: You may need a piece of scratch paper.

Review: Let A be a square matrix. If $A\vec{v} = \lambda \vec{v}$ for some nonzero vector \vec{v} , then we say that \vec{v} is an *eigenvector* and λ is an *eigenvalue*.

Exercise 1. Verify that the following are equivalent:

- 1. $A\vec{v} = \lambda \vec{v}$.
- 2. $(A \lambda I)\vec{v} = 0.$
- 3. $\vec{v} \in \ker(A \lambda I)$.

Exercise 2. Verify that the following are equivalent:

- 1. λ is an eigenvalue of A (that is, it has a nonzero eigenvector).
- 2. ker $(A \lambda I)$ is nonzero.
- 3. $A \lambda I$ is not invertible.
- 4. $\det(A \lambda I) = 0.$

Exercise 3. Compute the eigenvalues and eigenvectors of $A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$ using the following steps:

- 1. Compute $\det(A \lambda I)$.
- 2. For which values of λ does det $(A \lambda I) = 0$? In other words, find the roots λ_1 and λ_2 of the polynomial $p(\lambda) = \det(A \lambda I)$.
- 3. Note by the previous problem that λ_1 and λ_2 are the eigenvalues of A.
- 4. Find a basis for ker $(A \lambda_1 I)$.
- 5. Let \vec{v}_1 be a nonzero vector in ker $(A \lambda_1 I)$. Verify that $A\vec{v}_1 = \lambda_1 \vec{v}_1$, and thus \vec{v}_1 is an eigenvector.
- 6. Find a basis \vec{v}_2 for ker $(A \lambda_2 I)$.

Exercise 4. Use the same matrices and vectors from the previous problem.

- 1. Show that \vec{v}_1 and \vec{v}_2 are a basis for \mathbb{R}^2 .
- 2. Find the matrix of A with respect to the basis (\vec{v}_1, \vec{v}_2) .
- 3. Conclude that A is similar to a diagonal matrix.

Exercise 5. Suppose that \vec{v} is an eigenvector of A with eigenvalue λ and also an eigenvector of B with eigenvalue μ . Then

- 1. \vec{v} is an eigenvector of A + B. What is its eigenvalue?
- 2. \vec{v} is an eigenvector of AB. What is its eigenvalue?
- 3. If $k \ge 0$, then \vec{v} is an eigenvector of A^k . What is its eigenvalue?
- 4. If A is invertible, then \vec{v} is an eigenvector of A^{-1} . What is its eigenvalue?
- 5. If p(x) is any polynomial, then we can plug the matrix A into p. Then \vec{v} is an eigenvector of p(A) with eigenvalue $p(\lambda)$.
- 6. The same is true if we take a two variable polynomial p(x, y) and consider the matrix p(A, B).