Eigenvalues and Eigenvectors

David Jekel

February 23, 2016

Note: You may need a piece of scratch paper.

Review: Let A be a square matrix. If $A \vec{v}=\lambda \vec{v}$ for some nonzero vector \vec{v}, then we say that \vec{v} is an eigenvector and λ is an eigenvalue.

Exercise 1. Verify that the following are equivalent:

1. $A \vec{v}=\lambda \vec{v}$.
2. $(A-\lambda I) \vec{v}=0$.
3. $\vec{v} \in \operatorname{ker}(A-\lambda I)$.

Exercise 2. Verify that the following are equivalent:

1. λ is an eigenvalue of A (that is, it has a nonzero eigenvector).
2. $\operatorname{ker}(A-\lambda I)$ is nonzero.
3. $A-\lambda I$ is not invertible.
4. $\operatorname{det}(A-\lambda I)=0$.

Exercise 3. Compute the eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right)$ using the following steps:

1. Compute $\operatorname{det}(A-\lambda I)$.
2. For which values of λ does $\operatorname{det}(A-\lambda I)=0$? In other words, find the roots λ_{1} and λ_{2} of the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$.
3. Note by the previous problem that λ_{1} and λ_{2} are the eigenvalues of A.
4. Find a basis for $\operatorname{ker}\left(A-\lambda_{1} I\right)$.
5. Let \vec{v}_{1} be a nonzero vector in $\operatorname{ker}\left(A-\lambda_{1} I\right)$. Verify that $A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$, and thus \vec{v}_{1} is an eigenvector.
6. Find a basis \vec{v}_{2} for $\operatorname{ker}\left(A-\lambda_{2} I\right)$.

Exercise 4. Use the same matrices and vectors from the previous problem.

1. Show that \vec{v}_{1} and \vec{v}_{2} are a basis for \mathbb{R}^{2}.
2. Find the matrix of A with respect to the basis $\left(\vec{v}_{1}, \vec{v}_{2}\right)$.
3. Conclude that A is similar to a diagonal matrix.

Exercise 5. Suppose that \vec{v} is an eigenvector of A with eigenvalue λ and also an eigenvector of B with eigenvalue μ. Then

1. \vec{v} is an eigenvector of $A+B$. What is its eigenvalue?
2. \vec{v} is an eigenvector of $A B$. What is its eigenvalue?
3. If $k \geq 0$, then \vec{v} is an eigenvector of A^{k}. What is its eigenvalue?
4. If A is invertible, then \vec{v} is an eigenvector of A^{-1}. What is its eigenvalue?
5. If $p(x)$ is any polynomial, then we can plug the matrix A into p. Then \vec{v} is an eigenvector of $p(A)$ with eigenvalue $p(\lambda)$.
6. The same is true if we take a two variable polynomial $p(x, y)$ and consider the matrix $p(A, B)$.
