
Decimal Expansion of Rational Numbers

David Jekel

October 5, 2018

Here we describe how to rigorously define the decimal expansion of a rational
number using the properties of Euclidean division, and we prove some basic facts
about the decimal expansion. This is aimed at math students (probably early
undergraduate) who are beginning to learn about proofs.

N will denote the set of natural numbers 1, 2, 3, . . . . N0 will denote the set
{0, 1, 2, . . . }. Z will denote the integers. We’ll take the following result about
the division of integers as a given.

Proposition 1 (Euclidean division). Let a ∈ Z and b ∈ N. Then there exists a
unique q ∈ Z and r ∈ {0, 1, . . . , b− 1} such that a = qb+ r.

In elementary school, you learned to compute the quotient q and the re-
mainder r using long division. You also learned how to compute the digits of a
decimal expansion of a rational number a/b using long division. Let’s rephrase
the definition of the decimal digits in terms of Proposition 1. The first step is to
find the integer quotient and remainder for a/b. Using Proposition 1, we write

a = q0b+ r0

for some q0 ∈ Z and r0 ∈ {0, . . . , b− 1}.
Next, we have to find the decimal expansion of r0/b. By Proposition 1, we

have
10r0 = q1b+ r1

for some q1 ∈ Z and r1 ∈ {0, . . . , b− 1}. Since 0 ≤ 10r0 < 10b, the quotient q1
should be in {0, 1, . . . , 9}. To convince yourself that q1 corresponds to the first
decimal digit, note that

a

b
= q0 +

r0
b

= q0 +
10r0
10b

= q0 +
q1
10

+
r1
10b

.

Next, we repeat the process, writing

10r1 = q2b+ r2,
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and then by substituting this into previous equation, we get

a

b
= q0 +

q1
10

+
q2
102

+
r2

102b
.

We can continue this process indefinitely and thus define the digits q1, q2, . . . of
the decimal expansion.

The mathematically rigorous way of saying this is that we will define q1, q2,
. . . by induction. This depends on the following fact, which we state without
proof.

Proposition 2 (Inductive definition). Suppose that we want to define a math-
ematical object Pj for j ∈ N0. Assume that P0 is defined. Also, suppose that
given Pj, we have a rule which will uniquely define Pj+1. Then Pj is defined
for all j ∈ N0.

Proposition 3. Let a ∈ Z and b ∈ N. Then there are unique sequences of
integers q0, q1, . . . and r0, r1, . . . such that

a = bq0 + r0

10rj = bqj+1 + rj+1 for j ≥ 0

rj ∈ {0, . . . , b− 1} for j ≥ 0.

Proof. The mathematical object Pj that we want to define is the pair (qj , rj).
We first check that P0 is defined (the base case). This follows from Proposition
1 to a and b. Then we check that if Pj is defined, then Pj+1 is defined. This
follows by applying Proposition 1 to 10rj and b. So by the principle of inductive
definition, qj and rj are defined for all j.

Now let’s give a complete proof that qj is between 0 and 9 (that is, it is a
decimal digit).

Proposition 4. For j ≥ 1, we have 0 ≤ qj < 10.

Proof. Recall that qjb = 10rj−1−rj . We know that 0 ≤ rj−1 < b and 0 ≤ rj < b
Therefore,

0− b < 10rj−1 − rj < 10b− 0.

We get strict inequalities on both sides, since in each case at least one of the
inequalities we used was strict. Hence,

−b < qjb < 10b.

Dividing by b yields −1 < qj < 10, and hence 0 ≤ qj < 10.

Earlier, we showed that a/b = m0 +m1/10+m2/102 + r2/102b. The general
formula for the first n digits will be

a

b
= q0 +

q1
10

+ · · ·+ qn
10n

+
rn

10nb
=

n∑
j=0

qj
10j

+
rn

10nb
.
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Remark: Here the Σ is a summation notation. It is a compact way of writing
the sum of n terms without the . . . . In general,

∑n
j=0 aj means the same thing

as a0 + a1 + · · · + an. Actually, the sum of n terms is another object that is
defined inductively. Although you intuitively know what a0 + a1 + · · · + an
means, the rigorous definition (by induction on n) is that

0∑
j=0

aj = aj

n+1∑
j=0

aj =

n∑
j=1

aj + an+1.

Now let’s return to the decimal expansion formula that we want to prove.
Since the qj ’s and rj ’s are defined inductively, it would make sense for us to
prove our claim inductively as well. We use the following fact which we state
without proof.

Proposition 5 (Inductive proof). Suppose that for n ∈ N0, Pn is some mathe-
matical statement. Suppose that P0 is true and that Pn implies Pn+1. Then Pn

is true for all n ∈ N0.

Proposition 6. Let a ∈ Z and b ∈ N and let qj and rj be defined as above.
Then for n ≥ 0, we have

a

b
=

n∑
j=0

qj
10j

+
rn

10nb
.

Proof. Let Pn be the equation above that we want to prove. In order to use
induction, we’ll prove that P0 (the base case) and prove that Pn implies Pn+1

(the inductive step). For the base case, the statement P0 says that

a

b
= q0 + r0,

and this is true because that is how we defined q0 and r0. For the induction
step, assume Pn and then we’ll prove Pn+1. Now Pn tells us that

a

b
=

n∑
j=0

qj
10j

+
rn

10nb
.

By our definition of rn+1 and qn+1, we have 10rn = qn+1b+ rn+1. Thus,

rn
10nb

=
10rn

10n+1b
=
qn+1b+ rn+1

10n+1
=

qn+1

10n+1
+

rn+1

10n+1b
.

Therefore,

a

b
=

n∑
j=0

qj
10j

+
qn+1

10n+1
+

rn+1

10n+1b
=

n+1∑
j=0

qj
10j

+
rn+1

10n+1b
.
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The next statement we want to prove is that a/b is “approximately”
∑n

j=0mj/10j .
Rigorous statements about approximation are often written as estimates for how
small the error is, such as the following proposition.

Proposition 7. Let a, b and qj, rj be as above. Then∣∣∣∣∣∣ab −
n∑

j=0

qj
10j

∣∣∣∣∣∣ < 1

10n
.

Proof. The difference between the two terms is rn/10nb. Because 0 ≤ rn < b,
we have rn/10nb < 1/10n.

Finally, we’ll show that a/b equals the infinite sum
∑∞

j=0mj/10j . But first,
we have to explain what the infinite sum means. What we want to prove is really
a statement about limits of real numbers. We recall the following definitions
from basic analysis.

Definition 1. If {xn} is a sequence of real numbers, then we say xn → x if for
every ε > 0, there exists N ∈ N such that n ≥ N implies |xn − x| < ε.

Definition 2. If {yn} is a sequence of real numbers, then we say y =
∑∞

j=0 yj
if
∑n

j=0 yj → y.

Proposition 8. With the setup from above, we have

a

b
=

∞∑
j=0

mj

10j
.

Proof. Let yj = mj/10j . Let xn =
∑n

j=0mj/10j . We want to show that∑∞
j=0 yj = a/b. By definition, this means we must show that xn → a/b. And

to prove this, we need to prove that for every ε > 0, there exists N such that
n ≥ N implies |xn−a/b| < ε. In order to check this claim for every ε, we’ll start
out by saying “Let ε > 0” and then write an argument that works for every
possible value of ε.

Let ε > 0. Recall that 1/10n → 0 (prove this as an exercise or look up why
it is true). Because 1/10n → 0, there exists N such that n ≥ N implies that
1/10n < ε. We showed earlier that |xn − a/b| < 1/10n. Therefore, if n ≥ N ,
then |xn − a/b| < ε. Now we’re finished because for an arbitrary ε > 0, we
exhibited an N such that n ≥ N implies |xn − a/b| < ε.
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