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Detfinitions

Definition 1. A partition of [a,b] is a sequence of points a = tp <t < -+ <
t, =b. We can also view P as the set {tg,t1,...,tn}.

Definition 2. Suppose f : [a,b] — R is a bounded function and P = {tg,t1,...,tn}
is a partition. Denote

M;(f) = sup f(t),

tE[t;—1,t]

m;(f) = _inf f(t).
teftj—1,t;]
We define the upper and lower sums of f with respect to P by

Up(f) =) ( sup f(t)> (tj —tj-1)

j=1 \t€lti-1,t;]

n

Le(f) =3 (te[ti“fl ol f(t)) () = tj-1)-

Jj=1

Definition 3. We define the upper and lower Darboux integrals of f by
—b
=1 f
/ af inf Up (f)
b
[t
J P

Definition 4. We say that f is Darbouz integrable if the upper and lower
Darboux integrals agree. In this case, we define f; f to be the common value

ofTZf andiif.



Basic Properties
Lemma 5. If P is a partition of [a,b] and f : [a,b] = R is bounded, then
Lp(f) < Up(f).

Proof. Let P = {to,...,t,} and let M;(f) and m;(f) be as above. It is imme-
diate from the definition that m;(f) < M;(f). Thus,

ij(f)(tj —tj1) < ZMj(f)(tj —tj-1).

Definition 6. We say that a partition P’ is a refinement of P if P C P’.

Observation 7. If P; and Py are partitions of [a,b], then P = Py U Py is also
a partition of [a,b]. Moreover, Py U Py is a refinement of both Py and Ps.

Lemma 8. Let f : [a,b] = R be bounded. Suppose P’ is a refinement of P.
Then
Lp(f) < Lp:/(f) <Up(f) < Up(f).

Proof. Let us denote by P’ = {tg,...,tn}. Since P C P’, we must have P =
{tigs---+ti,, } where m < nand 0 = iy < --- < i, = n are a subset of the
indices 1,...,n. Then we have

Z ( sup f(t)) (tj —tj—1) < Z ( sup f(t>> (tj —tj-1)
j=ik_1+1 \tE€[ti-1,t3] jin—a 41 \FE[i_yti]

= < supt }f(t)) Z (t; —tj—1)

b€ty _y ot j=ig—1+1

= ( sup f(t)> (tik—l - tik)
€[ty tiy ]

In the first step above, we have used the fact that [t;, ,,t;, ] contains [t;_1,1;]
and thus will have a larger sup for the values of f. Now summing the previous
inequality from k =1, ..., m, we have

Z( sup [ ))( —ti) =) i: ( sup f(t)> (tj —tj-1)

=1 \t€lts-1.%;] k=1 \j=ir_1+1 \PElti-1.t3]

S Z ( Supt ]f(t)> (tik—l - tlk)

te[tik_l, i
This means exactly that
Upi(f) < Up(f).

The proof that Lp/(f) > Lp(f) is symmetrical. And we already know from the
previous lemma that Lp/(f) < Up/(f). O



b —b
Lemma 9. Let f : [a,b] = R be bounded. Then [ f < [ f.

Proof. Given partitions P; and P,, we can let P be the common refinement.
Then we have

Lp,(f) < Lp(f) < Up(f) < Up,(f).

This means that Up, (f) is an upper bound for the set {Lp, (f) : P1 a partition}.
Therefore,

b
/fziphﬁﬁéU@U)

Similarly, i Z f is a lower bound for the set of upper sums, and hence
[ 1=wionn= [ 1
a P J a
O

Lemma 10. Let f : [a,b] — R be bounded. Then f is Darbouz integrable if and
only if for every e > 0 there exists a partition P such that Up(f) — Lp(f) <e.

—b
Proof. Suppose that f is Darboux integrable. Then fbf =[,f LetI= f;f

be their common value. Because [ b f is the supremum of all lower sums, there
“a
exists are partition P; such that

Lp,(f) > 1 —¢/2.
Similarly, there exists a partition P, such that
Up, (f) < T+ ¢/2.
Let P = Py UPs. Then Lp(f) > Lp, (f) and Up(f) < Up,(f). Therefore,
Up(f) = Lp(f) SUp,(f) —Lp,(f) < +¢€/2) = (I —€¢/2) =

Conversely, suppose that for every € > 0, there exists a partition P such that
Up(f) — Lp(f) < e. If € is given and we consider such a partition P, then we

have [,/ < Up(f) and ["f > Lp(f). Hence,

/}—/?<wﬁ%¢mﬁ<e

—b
Since this holds for every e and since [ b </ .J automatically, we conclude
“a

—b
that f;f = [ f, and thus f is Darboux integrable. O



Monotonicity and Additivity Properties

Lemma 11. Let f,g: [a,b] = R be bounded functions and suppose that f < g.

Then . . , \
/afé/ag, /afé/ag-

In particular, if f and g are integrable, then fjf < fabg

Proof. Choose a partition P = {to,...,t,} and let M;(f) and m,;(f) be the
corresponding suprema and infima on subintervals. It is clear that M;(f) <
M;(g). It follows that Up(f) < Up(g). Then by taking the infimum over all P,

—b . —b
we obtain [ f < [ g. The argument for the lower integral is symmetrical. [

Lemma 12. Let f,g: [a,b] — R be bounded. Then
—b —b  —b

/U+d§/f+/g
b b b

/U+m2/f+/g

Moreover, if f and g are Darboux integrable, then f + g is Darbouz integrable
b b b
and [, (f+9)= [, f+ [, 9-

Proof. Let P be a partition and let M; and m; be the associated suprema and
infima. For all ¢t € [t;_1,¢;], we have

ft)+g(t) < M;(f)+ M;(g).

Therefore, taking the supremum on the left hand side, we have M;(f + g) <
M;(f)+ M;(g). It follows that for every partition P,

Up(f+9) <Up(f) +Up(g).

Moreover, if P; and P, are partitions, then we have

and

—b
/ (f +g) < UP1U732(f +g) < UP1U7’2(f) + UP1+732(9) < Upl (f) + U’PQ(g)'

Thus, we have for all P; and P that

—b

/ (f +9) < Up, (/) + Uny (9).

By taking the infimum over P; and then the infimum over Ps, we obtain
—b —b —b
(f+g)S/ f+/ g-

a a a



A symmetrical argument proves our second claim that

/i(f+g)>/if+/ig~

Combining and rearranging these inequalities shows that

—b b —b —b b b
[ea-[uros(frefa)-([s-[)
N —b b — 717
(/f/f>+</g/g>
If we assume that f and g are Darboux integrable, then the right hand side

is zero. This implies that the left hand side is zero (since it is nonnegative by
Lemma E[) Thus, f + g is Darboux integrable. O

Lemma 13. Let f : [a,b] — R be a bounded function, and let ¢ € R be a
constant. If ¢ > 0, then

foifs [o=fs

a —a

If ¢ <0, then we have

/icf:c/if, /Zcf:c/if.

If f is Darbouz integrable, then so is cf, and we have f; cf = cfab f-

Proof. If ¢ < 0, and if P is a given partition, then we have M;(cf) = cM;(f)
and m;(cf) = em;(f). It follows that Up(cf) = cUp(f) and Lp(cf) = cLp(f),
and then the first claim follows by taking the infimum over upper partitions and
the supremum over lower partitions of these equalities.

In the case where ¢ < 0, we have M;(cf) = em;(f) and m;(cf) = cM;(f),
and the rest of the argument proceeds in the same way.

The final claim about Darboux integrability of f implying Darboux integra-
bility of cf is immediate. O

Lemma 14. Suppose that a < b < c. Let f : [a,c] = R be a bounded function.

Then we have . —b —ec
[T s

c b ¢
=1

and



The function f is Darboux integrable on [a,c] if and only if fliap and f|p.q are
both Darbouz integrable. In this case

L[f:L%+Avi

Proof. Suppose that P is a partition of [a,c]. Then P’ = P U {b} is also a
partition of [a,c]. Moreover, P; = P’ N [a,b] is a partition of [a,b] and Py =
PN [b,c] is a partition of [b, c]. It follows from direct computation that

Up:(f) = Up, (flian) + Up, (f
By Lemma we have Up(f) > Up/(f). Also, by definition of the upper integral,
—b —c
U7’1 (f|[a,b]) > faf and U7J2 (f|[b,c]) > fbf Altogether,

Up(f) = /bf +/:f-

Since P was arbitrary, we can take the infimum on the left hand side to get
—c —b —c
fafzfaf+fbf'

To prove the opposite inequality, consider partitions P; of [a,b] and Ps of
[b, c]. Let P = P; U Py and note that this is a partition of [a,c]. Then we have

Up(f) = Up,(fliap) + Up, (flip.c))

[b,c])'

and in particular

/:f <Up,(f

Since P; and P were arbitrary, we obtain
—c —b —c
[i<]s+]s
a a b
—c —b —c
Thus, we have shown that [ f= [ f+ [,f. A symmetrical argument shows

that [°f = ["f+ [0 f.
It follows that

[o=[o-(=L2)-(To-12)

—c c —b —c c .
Each of the three numbers [ f— ["fand [ f— fbf and [, f— [ f is nonneg-
a Ja a “a ;)
ative. Thus, the number on the left hand side is zero if and only if both of the
numbers on the right hand side are zero. It follows that f is Darboux integrable
on [a, c] if and only if f|j4 4 and flp, o are both Darboux integrable. Moreover,

in this case it is immediate that [€ f = [ f + [¢ f. O

(a.0]) T Up, (flip,c))-



Integration and Continuous Functions

Lemma 15. If f : [a,b] = R is continuous, then f is Darbouz integrable.

Proof. Because f is a continuous function and [a, b] is compact, we know that
f achieves a maximum and a minimum, and hence it is bounded. Moreover,
because [a,b] is compact, f is uniformly continuous. Thus, given € > 0, there
exists § > 0 such that |z —y| < J implies |f(z) — f(y)| < €/(b — a) for all
z,y € [a,b]. Choose an integer n such that (b — a)/n < 6. Let P be the
partition {to,...,t,} where t; = a+ (b—a)j/n.

Fort,t' € [tj—1,t;], we have [t—t'| < (b—a)/n < 0 and hence |f(t)—f(t')| < e.

In particular,
€

b—a’

Now we take the supremum over ¢ € [t;_1,t;] on the left hand side and the
infimum over ¢ € [t;_1,%;] on the right hand side. This shows that

f) < fi)+

€

M;(f) <m;(f) +

b—a

Therefore, we have

> M)t —ti1) < ij(f)(tj —tj—1) + Z bja(tj —tj-1)

which means that c
Up(f) < Lp(f) +—(b—a).

b—a
Hence, Up(f) — Lp(f) < e. Since e was arbitrary, f is Darboux integrable by
Lemma O



