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Definitions

Definition 1. A partition of [a, b] is a sequence of points a = t0 < t1 < · · · <
tn = b. We can also view P as the set {t0, t1, . . . , tn}.

Definition 2. Suppose f : [a, b]→ R is a bounded function and P = {t0, t1, . . . , tn}
is a partition. Denote

Mj(f) = sup
t∈[tj−1,tj ]

f(t),

mj(f) = inf
t∈[tj−1,tj ]

f(t).

We define the upper and lower sums of f with respect to P by

UP(f) =

n∑
j=1

(
sup

t∈[tj−1,tj ]

f(t)

)
(tj − tj−1)

LP(f) =

n∑
j=1

(
inf

t∈[tj−1,tj ]
f(t)

)
(tj − tj−1).

Definition 3. We define the upper and lower Darboux integrals of f by∫ b

a

f = inf
P
UP(f)∫ b

a

f = sup
P
LP(f).

Definition 4. We say that f is Darboux integrable if the upper and lower

Darboux integrals agree. In this case, we define
∫ b

a
f to be the common value

of
∫ b

a
f and

∫ b

a
f .
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Basic Properties

Lemma 5. If P is a partition of [a, b] and f : [a, b] → R is bounded, then
LP(f) ≤ UP(f).

Proof. Let P = {t0, . . . , tn} and let Mj(f) and mj(f) be as above. It is imme-
diate from the definition that mj(f) ≤Mj(f). Thus,

n∑
j=1

mj(f)(tj − tj−1) ≤
n∑

j=1

Mj(f)(tj − tj−1).

Definition 6. We say that a partition P ′ is a refinement of P if P ⊆ P ′.

Observation 7. If P1 and P2 are partitions of [a, b], then P = P1 ∪P2 is also
a partition of [a, b]. Moreover, P1 ∪ P2 is a refinement of both P1 and P2.

Lemma 8. Let f : [a, b] → R be bounded. Suppose P ′ is a refinement of P.
Then

LP(f) ≤ LP′(f) ≤ UP′(f) ≤ UP(f).

Proof. Let us denote by P ′ = {t0, . . . , tn}. Since P ⊆ P ′, we must have P =
{ti0 , . . . , tim} where m ≤ n and 0 = i0 < · · · < im = n are a subset of the
indices 1, . . . , n. Then we have

ik∑
j=ik−1+1

(
sup

t∈[tj−1,tj ]

f(t)

)
(tj − tj−1) ≤

ik∑
j=ik−1+1

(
sup

t∈[tik−1
,tik ]

f(t)

)
(tj − tj−1)

=

(
sup

t∈[tik−1
,tik ]

f(t)

)
ik∑

j=ik−1+1

(tj − tj−1)

=

(
sup

t∈[tik−1
,tik ]

f(t)

)
(tik−1

− tik)

In the first step above, we have used the fact that [tik−1
, tik ] contains [tj−1, tj ]

and thus will have a larger sup for the values of f . Now summing the previous
inequality from k = 1, . . . , m, we have

n∑
j=1

(
sup

t∈[tj−1,tj ]

f(t)

)
(tj − tj−1) =

m∑
k=1

 ik∑
j=ik−1+1

(
sup

t∈[tj−1,tj ]

f(t)

)
(tj − tj−1)


≤

m∑
k=1

(
sup

t∈[tik−1
,tik ]

f(t)

)
(tik−1

− tik).

This means exactly that
UP′(f) ≤ UP(f).

The proof that LP′(f) ≥ LP(f) is symmetrical. And we already know from the
previous lemma that LP′(f) ≤ UP′(f).

2



Lemma 9. Let f : [a, b]→ R be bounded. Then
∫ b

a
f ≤

∫ b

a
f .

Proof. Given partitions P1 and P2, we can let P be the common refinement.
Then we have

LP1(f) ≤ LP(f) ≤ UP(f) ≤ UP2(f).

This means that UP2(f) is an upper bound for the set {LP1(f) : P1 a partition}.
Therefore, ∫ b

a

f = sup
P1

LP1(f) ≤ UP2(f).

Similarly,
∫ b

a
f is a lower bound for the set of upper sums, and hence

∫ b

a

f = inf
P2

UP2
(f) ≥

∫ b

a

f.

Lemma 10. Let f : [a, b]→ R be bounded. Then f is Darboux integrable if and
only if for every ε > 0 there exists a partition P such that UP(f)− LP(f) < ε.

Proof. Suppose that f is Darboux integrable. Then
∫ b

a
f =

∫ b

a
f . Let I =

∫ b

a
f

be their common value. Because
∫ b

a
f is the supremum of all lower sums, there

exists are partition P1 such that

LP1
(f) > I − ε/2.

Similarly, there exists a partition P2 such that

UP2
(f) < I + ε/2.

Let P = P1 ∪ P2. Then LP(f) ≥ LP1
(f) and UP(f) ≤ UP2

(f). Therefore,

UP(f)− LP(f) ≤ UP2(f)− LP1(f) < (I + ε/2)− (I − ε/2) = ε.

Conversely, suppose that for every ε > 0, there exists a partition P such that
UP(f) − LP(f) < ε. If ε is given and we consider such a partition P, then we

have
∫ b

a
f ≤ UP(f) and

∫ b

a
f ≥ LP(f). Hence,

∫ b

a

f −
∫ b

a

f ≤ UP(f)− LP(f) < ε.

Since this holds for every ε and since
∫ b

a
f ≤

∫ b

a
f automatically, we conclude

that
∫ b

a
f =

∫ b

a
f , and thus f is Darboux integrable.
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Monotonicity and Additivity Properties

Lemma 11. Let f, g : [a, b]→ R be bounded functions and suppose that f ≤ g.
Then ∫ b

a

f ≤
∫ b

a

g,

∫ b

a

f ≤
∫ b

a

g.

In particular, if f and g are integrable, then
∫ b

a
f ≤

∫ b

a
g.

Proof. Choose a partition P = {t0, . . . , tn} and let Mj(f) and mj(f) be the
corresponding suprema and infima on subintervals. It is clear that Mj(f) ≤
Mj(g). It follows that UP(f) ≤ UP(g). Then by taking the infimum over all P,

we obtain
∫ b

a
f ≤

∫ b

a
g. The argument for the lower integral is symmetrical.

Lemma 12. Let f, g : [a, b]→ R be bounded. Then∫ b

a

[f + g] ≤
∫ b

a

f +

∫ b

a

g

and ∫ b

a

[f + g] ≥
∫ b

a

f +

∫ b

a

g.

Moreover, if f and g are Darboux integrable, then f + g is Darboux integrable

and
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Proof. Let P be a partition and let Mj and mj be the associated suprema and
infima. For all t ∈ [tj−1, tj ], we have

f(t) + g(t) ≤Mj(f) +Mj(g).

Therefore, taking the supremum on the left hand side, we have Mj(f + g) ≤
Mj(f) +Mj(g). It follows that for every partition P,

UP(f + g) ≤ UP(f) + UP(g).

Moreover, if P1 and P2 are partitions, then we have∫ b

a

(f + g) ≤ UP1∪P2(f + g) ≤ UP1∪P2(f) + UP1+P2(g) ≤ UP1(f) + UP2(g).

Thus, we have for all P1 and P2 that∫ b

a

(f + g) ≤ UP1
(f) + UP2

(g).

By taking the infimum over P1 and then the infimum over P2, we obtain∫ b

a

(f + g) ≤
∫ b

a

f +

∫ b

a

g.
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A symmetrical argument proves our second claim that∫ b

a

(f + g) ≥
∫ b

a

f +

∫ b

a

g.

Combining and rearranging these inequalities shows that∫ b

a

(f + g)−
∫ b

a

(f + g) ≤

(∫ b

a

f +

∫ b

a

g

)
−

(∫ b

a

f −
∫ b

a

g

)

=

(∫ b

a

f −
∫ b

a

f

)
+

(∫ b

a

g −
∫ b

a

g

)

If we assume that f and g are Darboux integrable, then the right hand side
is zero. This implies that the left hand side is zero (since it is nonnegative by
Lemma 9). Thus, f + g is Darboux integrable.

Lemma 13. Let f : [a, b] → R be a bounded function, and let c ∈ R be a
constant. If c ≥ 0, then∫ b

a

cf = c

∫ b

a

f,

∫ b

a

cf = c

∫ b

a

f.

If c ≤ 0, then we have∫ b

a

cf = c

∫ b

a

f,

∫ b

a

cf = c

∫ b

a

f.

If f is Darboux integrable, then so is cf , and we have
∫ b

a
cf = c

∫ b

a
f .

Proof. If c ≤ 0, and if P is a given partition, then we have Mj(cf) = cMj(f)
and mj(cf) = cmj(f). It follows that UP(cf) = cUP(f) and LP(cf) = cLP(f),
and then the first claim follows by taking the infimum over upper partitions and
the supremum over lower partitions of these equalities.

In the case where c ≤ 0, we have Mj(cf) = cmj(f) and mj(cf) = cMj(f),
and the rest of the argument proceeds in the same way.

The final claim about Darboux integrability of f implying Darboux integra-
bility of cf is immediate.

Lemma 14. Suppose that a < b < c. Let f : [a, c]→ R be a bounded function.
Then we have ∫ c

a

f =

∫ b

a

f +

∫ c

b

f.

and ∫ c

a

f =

∫ b

a

f +

∫ c

b

f.
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The function f is Darboux integrable on [a, c] if and only if f |[a,b] and f |[b,c] are
both Darboux integrable. In this case∫ c

a

f =

∫ b

a

f +

∫ c

b

f.

Proof. Suppose that P is a partition of [a, c]. Then P ′ = P ∪ {b} is also a
partition of [a, c]. Moreover, P1 = P ′ ∩ [a, b] is a partition of [a, b] and P2 =
P ′ ∩ [b, c] is a partition of [b, c]. It follows from direct computation that

UP′(f) = UP1
(f |[a,b]) + UP2

(f |[b,c]).

By Lemma 8, we have UP(f) ≥ UP′(f). Also, by definition of the upper integral,

UP1
(f |[a,b]) ≥

∫ b

a
f and UP2

(f |[b,c]) ≥
∫ c

b
f . Altogether,

UP(f) ≥
∫ b

a

f +

∫ c

b

f.

Since P was arbitrary, we can take the infimum on the left hand side to get∫ c

a
f ≥

∫ b

a
f +

∫ c

b
f .

To prove the opposite inequality, consider partitions P1 of [a, b] and P2 of
[b, c]. Let P = P1 ∪ P2 and note that this is a partition of [a, c]. Then we have

UP(f) = UP1
(f |[a,b]) + UP2

(f |[b,c]),

and in particular ∫ c

a

f ≤ UP1(f |[a,b]) + UP2(f |[b,c]).

Since P1 and P2 were arbitrary, we obtain∫ c

a

f ≤
∫ b

a

f +

∫ c

b

f.

Thus, we have shown that
∫ c

a
f =

∫ b

a
f +

∫ c

b
f . A symmetrical argument shows

that
∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

It follows that∫ c

a

f −
∫ c

a

f =

(∫ b

a

f −
∫ b

a

f

)
+

(∫ c

b

f −
∫ c

b

f

)
.

Each of the three numbers
∫ c

a
f −

∫ c

a
f and

∫ b

a
f −

∫ b

a
f and

∫ c

b
f −

∫ c

b
f is nonneg-

ative. Thus, the number on the left hand side is zero if and only if both of the
numbers on the right hand side are zero. It follows that f is Darboux integrable
on [a, c] if and only if f |[a,b] and f |[b,c] are both Darboux integrable. Moreover,

in this case it is immediate that
∫ c

a
f =

∫ b

a
f +

∫ c

b
f .
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Integration and Continuous Functions

Lemma 15. If f : [a, b]→ R is continuous, then f is Darboux integrable.

Proof. Because f is a continuous function and [a, b] is compact, we know that
f achieves a maximum and a minimum, and hence it is bounded. Moreover,
because [a, b] is compact, f is uniformly continuous. Thus, given ε > 0, there
exists δ > 0 such that |x − y| < δ implies |f(x) − f(y)| < ε/(b − a) for all
x, y ∈ [a, b]. Choose an integer n such that (b − a)/n < δ. Let P be the
partition {t0, . . . , tn} where tj = a+ (b− a)j/n.

For t, t′ ∈ [tj−1, tj ], we have |t−t′| ≤ (b−a)/n < δ and hence |f(t)−f(t′)| < ε.
In particular,

f(t) ≤ f(t′) +
ε

b− a
.

Now we take the supremum over t ∈ [tj−1, tj ] on the left hand side and the
infimum over t′ ∈ [tj−1, tj ] on the right hand side. This shows that

Mj(f) ≤ mj(f) +
ε

b− a
.

Therefore, we have

n∑
j=1

Mj(f)(tj − tj−1) ≤
n∑

j=1

mj(f)(tj − tj−1) +

n∑
j=1

ε

b− a
(tj − tj−1)

which means that
UP(f) ≤ LP(f) +

ε

b− a
(b− a).

Hence, UP(f) − LP(f) ≤ ε. Since ε was arbitrary, f is Darboux integrable by
Lemma 10.
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