Notes on Darboux Integration

David Jekel

February 20, 2019

This was written for UCLA Math 131B, Winter 2019, taught by Alpár Mészáros

Definitions

Definition 1. A partition of [a, b] is a sequence of points $a = t_0 < t_1 < \cdots < t_n = b$. We can also view \mathcal{P} as the set $\{t_0, t_1, \ldots, t_n\}$.

Definition 2. Suppose $f : [a, b] \to \mathbb{R}$ is a bounded function and $\mathcal{P} = \{t_0, t_1, \ldots, t_n\}$ is a partition. Denote

$$M_{j}(f) = \sup_{t \in [t_{j-1}, t_{j}]} f(t),$$

$$m_{j}(f) = \inf_{t \in [t_{j-1}, t_{j}]} f(t).$$

We define the upper and lower sums of f with respect to \mathcal{P} by

$$U_{\mathcal{P}}(f) = \sum_{j=1}^{n} \left(\sup_{t \in [t_{j-1}, t_j]} f(t) \right) (t_j - t_{j-1})$$
$$L_{\mathcal{P}}(f) = \sum_{j=1}^{n} \left(\inf_{t \in [t_{j-1}, t_j]} f(t) \right) (t_j - t_{j-1}).$$

Definition 3. We define the upper and lower Darboux integrals of f by

$$\overline{\int}_{a}^{b} f = \inf_{\mathcal{P}} U_{\mathcal{P}}(f)$$
$$\underline{\int}_{a}^{b} f = \sup_{\mathcal{P}} L_{\mathcal{P}}(f).$$

Definition 4. We say that f is *Darboux integrable* if the upper and lower Darboux integrals agree. In this case, we define $\int_a^b f$ to be the common value of $\overline{\int}_a^b f$ and $\underline{\int}_a^b f$.

Basic Properties

Lemma 5. If \mathcal{P} is a partition of [a, b] and $f : [a, b] \to \mathbb{R}$ is bounded, then $L_{\mathcal{P}}(f) \leq U_{\mathcal{P}}(f)$.

Proof. Let $\mathcal{P} = \{t_0, \ldots, t_n\}$ and let $M_j(f)$ and $m_j(f)$ be as above. It is immediate from the definition that $m_j(f) \leq M_j(f)$. Thus,

$$\sum_{j=1}^{n} m_j(f)(t_j - t_{j-1}) \le \sum_{j=1}^{n} M_j(f)(t_j - t_{j-1}).$$

Definition 6. We say that a partition \mathcal{P}' is a *refinement* of \mathcal{P} if $\mathcal{P} \subseteq \mathcal{P}'$.

Observation 7. If \mathcal{P}_1 and \mathcal{P}_2 are partitions of [a, b], then $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ is also a partition of [a, b]. Moreover, $\mathcal{P}_1 \cup \mathcal{P}_2$ is a refinement of both \mathcal{P}_1 and \mathcal{P}_2 .

Lemma 8. Let $f : [a,b] \to \mathbb{R}$ be bounded. Suppose \mathcal{P}' is a refinement of \mathcal{P} . Then

$$L_{\mathcal{P}}(f) \le L_{\mathcal{P}'}(f) \le U_{\mathcal{P}'}(f) \le U_{\mathcal{P}}(f).$$

Proof. Let us denote by $\mathcal{P}' = \{t_0, \ldots, t_n\}$. Since $\mathcal{P} \subseteq \mathcal{P}'$, we must have $\mathcal{P} = \{t_{i_0}, \ldots, t_{i_m}\}$ where $m \leq n$ and $0 = i_0 < \cdots < i_m = n$ are a subset of the indices $1, \ldots, n$. Then we have

$$\sum_{j=i_{k-1}+1}^{i_k} \left(\sup_{t \in [t_{j-1}, t_j]} f(t) \right) (t_j - t_{j-1}) \le \sum_{j=i_{k-1}+1}^{i_k} \left(\sup_{t \in [t_{i_{k-1}}, t_{i_k}]} f(t) \right) (t_j - t_{j-1})$$
$$= \left(\sup_{t \in [t_{i_{k-1}}, t_{i_k}]} f(t) \right) \sum_{j=i_{k-1}+1}^{i_k} (t_j - t_{j-1})$$
$$= \left(\sup_{t \in [t_{i_{k-1}}, t_{i_k}]} f(t) \right) (t_{i_{k-1}} - t_{i_k})$$

In the first step above, we have used the fact that $[t_{i_{k-1}}, t_{i_k}]$ contains $[t_{j-1}, t_j]$ and thus will have a larger sup for the values of f. Now summing the previous inequality from $k = 1, \ldots, m$, we have

$$\sum_{j=1}^{n} \left(\sup_{t \in [t_{j-1}, t_j]} f(t) \right) (t_j - t_{j-1}) = \sum_{k=1}^{m} \left(\sum_{j=i_{k-1}+1}^{i_k} \left(\sup_{t \in [t_{j-1}, t_j]} f(t) \right) (t_j - t_{j-1}) \right)$$
$$\leq \sum_{k=1}^{m} \left(\sup_{t \in [t_{i_{k-1}}, t_{i_k}]} f(t) \right) (t_{i_{k-1}} - t_{i_k}).$$

This means exactly that

 $U_{\mathcal{P}'}(f) \le U_{\mathcal{P}}(f).$

The proof that $L_{\mathcal{P}'}(f) \geq L_{\mathcal{P}}(f)$ is symmetrical. And we already know from the previous lemma that $L_{\mathcal{P}'}(f) \leq U_{\mathcal{P}'}(f)$.

Lemma 9. Let $f : [a,b] \to \mathbb{R}$ be bounded. Then $\underline{\int}_{a}^{b} f \leq \overline{\int}_{a}^{b} f$.

Proof. Given partitions \mathcal{P}_1 and \mathcal{P}_2 , we can let \mathcal{P} be the common refinement. Then we have

$$L_{\mathcal{P}_1}(f) \le L_{\mathcal{P}}(f) \le U_{\mathcal{P}}(f) \le U_{\mathcal{P}_2}(f).$$

This means that $U_{\mathcal{P}_2}(f)$ is an upper bound for the set $\{L_{\mathcal{P}_1}(f) : \mathcal{P}_1 \text{ a partition}\}$. Therefore,

$$\underline{\int}_{a}^{b} f = \sup_{\mathcal{P}_{1}} L_{\mathcal{P}_{1}}(f) \le U_{\mathcal{P}_{2}}(f).$$

Similarly, $\int_{a}^{b} f$ is a lower bound for the set of upper sums, and hence

$$\overline{\int}_{a}^{b} f = \inf_{\mathcal{P}_{2}} U_{\mathcal{P}_{2}}(f) \ge \underline{\int}_{a}^{b} f.$$

Lemma 10. Let $f : [a, b] \to \mathbb{R}$ be bounded. Then f is Darboux integrable if and only if for every $\epsilon > 0$ there exists a partition \mathcal{P} such that $U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \epsilon$.

Proof. Suppose that f is Darboux integrable. Then $\underline{\int}_{a}^{b} f = \overline{\int}_{a}^{b} f$. Let $I = \int_{a}^{b} f$ be their common value. Because $\underline{\int}_{a}^{b} f$ is the supremum of all lower sums, there exists are partition \mathcal{P}_{1} such that

$$L_{\mathcal{P}_1}(f) > I - \epsilon/2.$$

Similarly, there exists a partition \mathcal{P}_2 such that

$$U_{\mathcal{P}_2}(f) < I + \epsilon/2.$$

Let $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$. Then $L_{\mathcal{P}}(f) \ge L_{\mathcal{P}_1}(f)$ and $U_{\mathcal{P}}(f) \le U_{\mathcal{P}_2}(f)$. Therefore,

$$U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) \le U_{\mathcal{P}_2}(f) - L_{\mathcal{P}_1}(f) < (I + \epsilon/2) - (I - \epsilon/2) = \epsilon$$

Conversely, suppose that for every $\epsilon > 0$, there exists a partition \mathcal{P} such that $U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \epsilon$. If ϵ is given and we consider such a partition \mathcal{P} , then we have $\overline{\int}_{a}^{b} f \leq U_{\mathcal{P}}(f)$ and $\underline{\int}_{a}^{b} f \geq L_{\mathcal{P}}(f)$. Hence,

$$\overline{\int}_{a}^{b} f - \underline{\int}_{a}^{b} f \le U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) < \epsilon$$

Since this holds for every ϵ and since $\underline{\int}_{a}^{b} f \leq \overline{\int}_{a}^{b} f$ automatically, we conclude that $\underline{\int}_{a}^{b} f = \overline{\int}_{a}^{b} f$, and thus f is Darboux integrable.

Monotonicity and Additivity Properties

Lemma 11. Let $f, g : [a, b] \to \mathbb{R}$ be bounded functions and suppose that $f \leq g$. Then

$$\overline{\int}_{a}^{b} f \leq \overline{\int}_{a}^{b} g, \qquad \underline{\int}_{a}^{b} f \leq \underline{\int}_{a}^{b} g.$$

In particular, if f and g are integrable, then $\int_a^b f \leq \int_a^b g$.

Proof. Choose a partition $\mathcal{P} = \{t_0, \ldots, t_n\}$ and let $M_j(f)$ and $m_j(f)$ be the corresponding suprema and infima on subintervals. It is clear that $M_j(f) \leq M_j(g)$. It follows that $U_{\mathcal{P}}(f) \leq U_{\mathcal{P}}(g)$. Then by taking the infimum over all \mathcal{P} , we obtain $\overline{\int}_a^b f \leq \overline{\int}_a^b g$. The argument for the lower integral is symmetrical. \Box

Lemma 12. Let $f, g : [a, b] \to \mathbb{R}$ be bounded. Then

$$\overline{\int}_{a}^{b} [f+g] \leq \overline{\int}_{a}^{b} f + \overline{\int}_{a}^{b} g$$

and

$$\underline{\int}_{a}^{b} [f+g] \ge \underline{\int}_{a}^{b} f + \underline{\int}_{a}^{b} g$$

Moreover, if f and g are Darboux integrable, then f + g is Darboux integrable and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.

Proof. Let \mathcal{P} be a partition and let M_j and m_j be the associated suprema and infima. For all $t \in [t_{j-1}, t_j]$, we have

$$f(t) + g(t) \le M_j(f) + M_j(g).$$

Therefore, taking the supremum on the left hand side, we have $M_j(f+g) \leq M_j(f) + M_j(g)$. It follows that for every partition \mathcal{P} ,

$$U_{\mathcal{P}}(f+g) \le U_{\mathcal{P}}(f) + U_{\mathcal{P}}(g)$$

Moreover, if \mathcal{P}_1 and \mathcal{P}_2 are partitions, then we have

$$\overline{\int}_{a}^{o} (f+g) \leq U_{\mathcal{P}_1 \cup \mathcal{P}_2}(f+g) \leq U_{\mathcal{P}_1 \cup \mathcal{P}_2}(f) + U_{\mathcal{P}_1 + \mathcal{P}_2}(g) \leq U_{\mathcal{P}_1}(f) + U_{\mathcal{P}_2}(g)$$

Thus, we have for all \mathcal{P}_1 and \mathcal{P}_2 that

$$\overline{\int}_{a}^{b} (f+g) \le U_{\mathcal{P}_{1}}(f) + U_{\mathcal{P}_{2}}(g).$$

By taking the infimum over \mathcal{P}_1 and then the infimum over \mathcal{P}_2 , we obtain

$$\overline{\int}_{a}^{b} (f+g) \leq \overline{\int}_{a}^{b} f + \overline{\int}_{a}^{b} g.$$

A symmetrical argument proves our second claim that

$$\underline{\int}_{a}^{b}(f+g) \geq \underline{\int}_{a}^{b}f + \underline{\int}_{a}^{b}g.$$

Combining and rearranging these inequalities shows that

$$\begin{split} \overline{\int}_{a}^{b}(f+g) - \underline{\int}_{a}^{b}(f+g) &\leq \left(\overline{\int}_{a}^{b}f + \overline{\int}_{a}^{b}g\right) - \left(\underline{\int}_{a}^{b}f - \underline{\int}_{a}^{b}g\right) \\ &= \left(\overline{\int}_{a}^{b}f - \underline{\int}_{a}^{b}f\right) + \left(\overline{\int}_{a}^{b}g - \underline{\int}_{a}^{b}g\right) \end{split}$$

If we assume that f and g are Darboux integrable, then the right hand side is zero. This implies that the left hand side is zero (since it is nonnegative by Lemma 9). Thus, f + g is Darboux integrable.

Lemma 13. Let $f : [a,b] \to \mathbb{R}$ be a bounded function, and let $c \in \mathbb{R}$ be a constant. If $c \ge 0$, then

$$\overline{\int}_{a}^{b} cf = c \overline{\int}_{a}^{b} f, \qquad \underline{\int}_{a}^{b} cf = c \underline{\int}_{a}^{b} f$$

If $c \leq 0$, then we have

$$\overline{\int}_{a}^{b} cf = c \underline{\int}_{a}^{b} f, \qquad \underline{\int}_{a}^{b} cf = c \overline{\int}_{a}^{b} f.$$

If f is Darboux integrable, then so is cf, and we have $\int_a^b cf = c \int_a^b f$.

Proof. If $c \leq 0$, and if \mathcal{P} is a given partition, then we have $M_j(cf) = cM_j(f)$ and $m_j(cf) = cm_j(f)$. It follows that $U_{\mathcal{P}}(cf) = cU_{\mathcal{P}}(f)$ and $L_{\mathcal{P}}(cf) = cL_{\mathcal{P}}(f)$, and then the first claim follows by taking the infimum over upper partitions and the supremum over lower partitions of these equalities.

In the case where $c \leq 0$, we have $M_j(cf) = cm_j(f)$ and $m_j(cf) = cM_j(f)$, and the rest of the argument proceeds in the same way.

The final claim about Darboux integrability of f implying Darboux integrability of cf is immediate.

Lemma 14. Suppose that a < b < c. Let $f : [a, c] \to \mathbb{R}$ be a bounded function. Then we have

$$\overline{\int}_{a}^{c} f = \overline{\int}_{a}^{b} f + \overline{\int}_{b}^{c} f.$$
$$\underline{\int}_{a}^{c} f = \underline{\int}_{a}^{b} f + \underline{\int}_{-b}^{c} f.$$

and

The function f is Darboux integrable on [a, c] if and only if $f|_{[a,b]}$ and $f|_{[b,c]}$ are both Darboux integrable. In this case

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$$

Proof. Suppose that \mathcal{P} is a partition of [a, c]. Then $\mathcal{P}' = \mathcal{P} \cup \{b\}$ is also a partition of [a, c]. Moreover, $\mathcal{P}_1 = \mathcal{P}' \cap [a, b]$ is a partition of [a, b] and $\mathcal{P}_2 =$ $\mathcal{P}' \cap [b,c]$ is a partition of [b,c]. It follows from direct computation that

$$U_{\mathcal{P}'}(f) = U_{\mathcal{P}_1}(f|_{[a,b]}) + U_{\mathcal{P}_2}(f|_{[b,c]})$$

By Lemma 8, we have $U_{\mathcal{P}}(f) \geq U_{\mathcal{P}'}(f)$. Also, by definition of the upper integral, $U_{\mathcal{P}_1}(f|_{[a,b]}) \geq \overline{\int}_a^b f$ and $U_{\mathcal{P}_2}(f|_{[b,c]}) \geq \overline{\int}_b^c f$. Altogether,

$$U_{\mathcal{P}}(f) \ge \overline{\int}_{a}^{b} f + \overline{\int}_{b}^{c} f.$$

Since \mathcal{P} was arbitrary, we can take the infimum on the left hand side to get

 $\overline{\int}_{a}^{c} f \geq \overline{\int}_{a}^{b} f + \overline{\int}_{b}^{c} f.$ To prove the opposite inequality, consider partitions \mathcal{P}_{1} of [a, b] and \mathcal{P}_{2} of [b, c]. Let $\mathcal{P} = \mathcal{P}_{1} \cup \mathcal{P}_{2}$ and note that this is a partition of [a, c]. Then we have

$$U_{\mathcal{P}}(f) = U_{\mathcal{P}_1}(f|_{[a,b]}) + U_{\mathcal{P}_2}(f|_{[b,c]}),$$

and in particular

$$\overline{\int}_{a}^{c} f \leq U_{\mathcal{P}_{1}}(f|_{[a,b]}) + U_{\mathcal{P}_{2}}(f|_{[b,c]}).$$

Since \mathcal{P}_1 and \mathcal{P}_2 were arbitrary, we obtain

$$\overline{\int}_{a}^{c} f \leq \overline{\int}_{a}^{b} f + \overline{\int}_{b}^{c} f.$$

Thus, we have shown that $\overline{f}_a^c f = \overline{f}_a^b f + \overline{f}_b^c f$. A symmetrical argument shows that $\underline{\int}_{a}^{c} f = \underline{\int}_{a}^{b} f + \underline{\int}_{b}^{c} f$. It follows that

$$\overline{\int}_{a}^{c} f - \underline{\int}_{a}^{c} f = \left(\overline{\int}_{a}^{b} f - \underline{\int}_{a}^{b} f\right) + \left(\overline{\int}_{b}^{c} f - \underline{\int}_{b}^{c} f\right).$$

Each of the three numbers $\overline{\int}_{a}^{c} f - \underline{\int}_{a}^{c} f$ and $\overline{\int}_{a}^{b} f - \underline{\int}_{a}^{b} f$ and $\overline{\int}_{b}^{c} f - \underline{\int}_{b}^{c} f$ is nonnegative. Thus, the number on the left hand side is zero if and only if *both* of the numbers on the right hand side are zero. It follows that f is Darboux integrable on [a, c] if and only if $f|_{[a,b]}$ and $f|_{[b,c]}$ are both Darboux integrable. Moreover, in this case it is immediate that $\int_a^c f = \int_a^b f + \int_b^c f$.

Integration and Continuous Functions

Lemma 15. If $f : [a, b] \to \mathbb{R}$ is continuous, then f is Darboux integrable.

Proof. Because f is a continuous function and [a, b] is compact, we know that f achieves a maximum and a minimum, and hence it is bounded. Moreover, because [a, b] is compact, f is uniformly continuous. Thus, given $\epsilon > 0$, there exists $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon/(b - a)$ for all $x,y \in [a,b]$. Choose an integer n such that $(b-a)/n < \delta$. Let \mathcal{P} be the partition $\{t_0, \ldots, t_n\}$ where $t_j = a + (b-a)j/n$. For $t, t' \in [t_{j-1}, t_j]$, we have $|t-t'| \le (b-a)/n < \delta$ and hence $|f(t)-f(t')| < \epsilon$.

In particular,

$$f(t) \le f(t') + \frac{\epsilon}{b-a}.$$

Now we take the supremum over $t \in [t_{j-1}, t_j]$ on the left hand side and the infimum over $t' \in [t_{j-1}, t_j]$ on the right hand side. This shows that

$$M_j(f) \le m_j(f) + \frac{\epsilon}{b-a}.$$

Therefore, we have

$$\sum_{j=1}^{n} M_j(f)(t_j - t_{j-1}) \le \sum_{j=1}^{n} m_j(f)(t_j - t_{j-1}) + \sum_{j=1}^{n} \frac{\epsilon}{b-a}(t_j - t_{j-1})$$

which means that

$$U_{\mathcal{P}}(f) \le L_{\mathcal{P}}(f) + \frac{\epsilon}{b-a}(b-a).$$

Hence, $U_{\mathcal{P}}(f) - L_{\mathcal{P}}(f) \leq \epsilon$. Since ϵ was arbitrary, f is Darboux integrable by Lemma 10.