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Abstract

This note, developed for Math 334 at UW and Math 131B at UCLA,
explains some well-known and fundamental results about compactness in
metric spaces. First, we prove that a subset of a metric space is compact
if and only if it is sequentially compact if and only if it is complete and to-
tally bounded. Second, we describe several consequences of compactness,
providing two parallel proofs for each result, one with open covers and
one with sequences. Third, we prove the Arzela-Ascoli theorem, which
characterizes when a subset of C(X;R) is compact.
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1 Three Equivalent Definitions of Compactness

Our goal in this section is to show that three different definitions of compactness
are equivalent to each other.

Definition 1.1. Let (X, d) be a metric space and E ⊆ X. An open cover
of E is a collection of open sets (Uα)α∈I (indexed by some set I) such that
E ⊆

⋃
α∈I Uα. Given an open cover (Uα)α∈I , a subcover is a subcollection

(Uα)α∈J given by some J ⊆ I, such that E ⊆
⋃
α∈J Uα. We say that an open

cover is finite if the index set is finite.

Definition 1.2. We say that E ⊆ X is compact if every open cover has a
finite subcover. In other words, if (Uα)α∈E is a collection of open sets with
E ⊆

⋃
α∈I Uα, then there exists a finite set F ⊆ I such that E ⊆

⋃
α∈F Uα.

Definition 1.3. We say that E ⊆ X is sequentially compact if for every se-
quence (xn)n∈N in E, there exists a subsequence (xnk

)k∈N that converges to
some point x0 ∈ E.

Definition 1.4. We say that E ⊆ X is complete if every Cauchy sequence in
E converges to some point in E.

Definition 1.5. We say that E ⊆ X is totally bounded if for every r > 0, there
exist a finite set F of points in E such that E ⊆

⋃
x∈F B(x, r).

Theorem 1.6. Let (X, d) be a metric space and let E ⊆ X. Then the following
are equivalent:

(a) E is compact.

(b) E is sequentially compact.

(c) E is complete and totally bounded.

In the next three subsections, we will show (a) =⇒ (c), (c) =⇒ (b), and
(b) =⇒ (a), which will prove the theorem.

1.1 Compact implies Complete and Totally Bounded

Lemma 1.7. Let (X, d) be a metric space and E ⊆ X. The following are
equivalent:

(a) E is compact.

(b) Suppose that (Kα)α∈I is a collection of closed subsets of X. Suppose that
for every finite F ⊆ I, we have

E ∩
⋂
α∈F

Kα 6= ∅.

Then we have
E ∩

⋂
α∈I

Kα 6= ∅.
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Proof. By taking the contrapositive, condition (b) is equivalent to the following:
If (Kα)α∈I is a collection of closed subsets of X and if E ∩

⋂
α∈I Kα = ∅, then

there exists a finite F ⊆ I such that E ∩
⋂
α∈F Kα = ∅.

Recall that a set is open if and only if the complement is closed. Note that
there is a one-to-one correspondence between collections of open sets {Uα}α∈I
and collections of closed sets (Kα)α∈I , given by Kα = U cα. Moreover, using
DeMorgan’s laws, (⋃

α∈I
Uα

)c
=
⋂
α∈I

Kα.

It follows that
E ⊆

⋃
α∈I

Uα ⇐⇒ E ∩
⋂
α∈I

Kα = ∅.

Similarly, if F is a finite subset of I, then

E ⊆
⋃
α∈F

Uα ⇐⇒ E ∩
⋂
α∈F

Kα = ∅.

Therefore, if we rewrite condition (b) in terms of the collection of open
sets (Uα)α∈I rather than the closed sets (Kα)α∈I , it means that if (Uα)α∈I is a
collection of open sets in X and if E ⊆

⋃
α∈I Uα, then there exists a finite F ⊆ I

such that E ⊆
⋃
α∈F Uα. This is exactly the definition of compactness.

Lemma 1.8. If E ⊆ X is compact, then E is complete.

Proof. Assume that E is a compact. To prove completeness, suppose that
(xn)n∈N is a Cauchy sequence in E. Define

γn = sup
m≥n

d(xm, xn).

Note that γn → 0 as n → ∞. Indeed, because (xn)n∈N is Cauchy, for every
ε > 0, there exists N such that

m,n ≥ N =⇒ d(xm, xn) < ε.

Then if n ≥ N , we have
sup
m≥n

d(xm, xn) ≤ ε.

Thus, n ≥ N =⇒ γn ≤ ε. This implies that γn → 0 (since γn ≥ 0 obviously).
Now define Kn = {x ∈ X : d(x, xn) ≤ γn}, that is, Kn is the closed ball of

radius of γn. We want to apply the previous lemma to the collection (Kn)n∈N.
Note that Kn is a closed set (exercise). Suppose that F ⊆ N and let m = maxF .
Then for each n ∈ F , we have m ≥ n and hence by definition of γn, we have
d(xm, xn) ≤ γn, hence xm ∈ Kn. It follows that xm ∈ E∩

⋂
n∈F Kn. Therefore,

we have E ∩
⋂
n∈F Kn 6= ∅ for every finite F ⊆ N.

By the previous lemma, since E is compact, we know that E∩
⋂
n∈NKn 6= ∅.

Let x0 ∈ E∩
⋂
n∈NKn. Then by definition of Kn, we have d(xn, x0) ≤ γn. Since

γn → 0, we have xn → x0. Therefore, every Cauchy sequence in E converges to
a point in E as desired.
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Lemma 1.9. If E ⊆ X is compact, then E is totally bounded.

Proof. Suppose that E is compact. Let r > 0. Note that (B(y, r))y∈E is an open
cover of E. Indeed, we know that an open ball B(x, r) is an open set (exercise),
and the collection {B(x, r)}x∈E covers E because each x is contained in the
corresponding ball B(x, r). By compactness, there exists a finite F ⊆ E such
that E ⊆

⋃
x∈F B(x, r). This means precisely that E is totally bounded.

1.2 Complete and Totally Bounded Implies Sequentially
Compact

Lemma 1.10. Suppose that E ⊆ X is complete and totally bounded. Then E
is sequentially compact.

Proof. Let (xn)n∈N be an arbitrary sequence in E, and we will show that there
is a subsequence converging to some point x0 ∈ E.

We define infinite sets Sk ⊆ N by induction on k as follows. For the base
case, let S0 = N. For the inductive step, suppose that Sk−1 has been chosen.
Because E is a totally bounded, there exists a finite set Fk such that E ⊆⋃
y∈Fk

B(y, 1/k). For each n ∈ Sk−1, the point xn must be in one of the balls
B(y, 1/k). Because Sk−1 is infinite but there are only finitely many balls, there
must be one ball that contains xn for infinitely many values of n ∈ Sk−1. Let
us call this ball B(yk, 1/k) and let Sk = {n ∈ Sk−1 : xn ∈ B(yk, 1/k)}. Note
that Sk is infinite by construction. We also have Sk ⊆ Sk−1.

Now we choose the indices nk for our subsequence inductively. For the base
case, let n0 = 1. For the inductive step, once nk−1 has been chosen, we may
select nk ∈ Sk such that nk > nk−1 (because Sk is infinite). If j, k ≥ K, then
we have Sj ⊆ SK and Sk ⊆ SK , and hence nj , nk ∈ SK , which implies that
xnj

, xnk
∈ B(yK , 1/K). But if xnj

, xnk
∈ B(yK , 1/K), then

d(xnj
, xnk

) ≤ d(xnj
, yK) + d(yK , xnk

) ≤ 1

K
+

1

K
=

2

K
.

Overall, we have for natural numbers j, k, and K that

j, k ≥ K =⇒ d(xnj , xnk
) ≤ 2

K
.

Given ε > 0, we may choose K such that 2/K < ε. Then

j, k ≥ K =⇒ d(xnj
, xnk

) ≤ 2

K
< ε.

This means that (xnk
)k∈N is a Cauchy sequence. Therefore, by completeness of

E, (xnk
)k∈N converges to some x0 ∈ E. Therefore, (xn)n∈N has a convergent

subsequence as desired.
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1.3 Sequentially Compact Implies Compact

Lemma 1.11. Suppose that E ⊆ X is sequentially compact. Then E is totally
bounded.

Proof. We proceed by contrapositive. Suppose that E is not totally bounded.
Then there exists an r > 0 such that no finite collection of balls of radius r will
cover E. Now we construct a sequence (xn)n∈N by induction. Note that E must
be nonempty, so we can choose x1 ∈ E. For the induction step, suppose that
x1, . . . , xn−1 have been chosen. Then the balls B(x1, r), . . . , B(xn−1, r) do not

cover E, and therefore, we may choose some xn in E \
⋃n−1
j=1 B(xj , r).

By construction, if m > n, then xm 6∈ B(xn, r) and hence d(xm, xn) ≥ r. It
follows that if (xnk

)k∈N is a subsequence of (xn)n∈N, then d(xnj
, xnk

) ≥ r for
j 6= k. Therefore, any subsequence of (xn)n∈N cannot be Cauchy and hence it
cannot converge. Thus, (xn)n∈N has no convergent subsequence, so E is not
sequentially compact.

Lemma 1.12. Suppose that E ⊆ X is sequentially compact, and let (Uα)α∈I is
an open cover of E. Then there exists some r > 0, such that for every x ∈ E,
the ball B(x, r) is contained in one of the sets Uα.

Proof. We proceed by contradiction. Assume that X is sequentially compact
but that the conclusion fails. Then for every r > 0, there exists some x ∈ E
such that B(x, r) is not contained in one of the sets Uα. In particular, for each
n ∈ N, there exists xn ∈ E such that B(xn, 1/n) is not contained in one of the
sets Uα.

Because E is sequentially compact, the sequence (xn)n∈N has a subsequence
(xnk

)k∈N which converges to some x0 ∈ E. Because (Uα)α∈I is an open cover,
there exists some index α such that x0 ∈ Uα. Because Uα is open, there exists
some r > 0 such that B(x0, r) ⊆ Uα. Since xnk

→ x0 and 1/nk → 0, we have

lim
k→∞

(
d(xnk

, x0) +
1

nk

)
= 0.

In particular, there exists some k such that

d(xnk
, x0) +

1

nk
< r.

Now if y ∈ B(xnk
, 1/nk), then we have

d(y, x0) ≤ d(y, xnk
) + d(xnk

, x0) ≤ 1

nk
+ d(xnk

, x0) < r,

and hence y ∈ B(x0, r); this implies that

B(xnk
, 1/nk) ⊆ B(x0, r) ⊆ Uα.

However, by our choice of xn, we know that B(xnk
, 1/nk) cannot be contained

in any set Uα. This is a contradiction, so the proof is complete.
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Lemma 1.13. If E ⊆ X is sequentially compact, then E is compact.

Proof. Assume that E is sequentially compact. To prove compactness, suppose
that (Uα)α∈I is an open cover of E. By Lemma 1.12, there exists an r > 0 such
that for every x ∈ E, the ball B(x, r) is contained in one of the sets Uα. By
Lemma 1.11, E is totally bounded, and hence there exists a finite set F ⊆ E
such that E ⊆

⋃
x∈F B(x, r). For each x ∈ F , there exists an index αx ∈ I such

that B(x, r) ⊆ Uαx
, by our choice of r. Therefore, E ⊆

⋃
x∈F Uαx

, and hence
(Uαx)x∈F is our desired finite subcover.

1.4 Corollaries; the Heine-Borel Theorem

In the special case X = Rn, the general Theorem 1.6 reduces to the Heine-
Borel theorem, which says that a subset of Rn is compact if and only if it is
closed and bounded. The point is that the conditions of completeness and total
boundedness can be expressed in a simpler way if E is a subset of Rn. We
now explain how to deduce this special case, as well as making other general
observations.

Lemma 1.14. Let X be a metric space and E ⊆ X. If E is complete, then E
is closed. The converse holds if X is complete.

Proof. For the first claim, suppose that E is complete. To show that E is
closed, suppose that (xn)n∈N is a sequence in E that converges in X to some
point x0 ∈ X, and we will show x0 ∈ E. Since (xn)n∈N is convergent in X, it is
a Cauchy sequence. By assumption (xn)n∈N must converge to some point x in
E. The limit of a sequence in X is unique and hence x = x0. Thus, x0 = x ∈ E
as desired.

For the second claim, suppose that X is complete and E is closed. To show
that E is complete, suppose that (xn)n∈N is a Cauchy sequence in E and we
will show that xn is convergent in E. Then (xn)n∈N is a Cauchy sequence in X.
Therefore, it converges to some x0 ∈ X. Because E is closed and xn → x0, we
know x0 ∈ E. Therefore, xn → x0 in E.

Lemma 1.15. Let X be a metric space and E ⊆ X. If E is totally bounded,
then E is bounded. The converse holds if X = Rd.

Proof. Since E is totally bounded, there exist finitely many balls of radius 1
that cover E; call them B(x1, 1), . . . , B(xn, 1). Pick some point x0 ∈ E and let
R = max(d(x0, xj)) + 1. Then for each x ∈ E, we have x ∈ B(xj , 1) for some j
and by the triangle inequality d(x, x0) < R. Therefore, E ⊆ B(x0, R), so E is
bounded.

For the second claim, suppose that E is a bounded subset of Rd. Let r > 0.
Because E is bounded, there exists some M > 0 such that E ⊆ [−M,M ]d.
For each n ∈ N, we may subdivide [−M,M ]d in a grid-like fashion into (2n)d

(d-dimensional) closed cubes of side length M/n. Each such cube is contained
in an open ball of radius d1/2(M/n) about the center point of the cube. Thus,
if we choose n large enough, that Md1/2/n < r, then we have covered E by
finitely many balls of radius of r.
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Theorem 1.16 (Heine-Borel). A subset of Rd is compact if and only if it is
closed and bounded.

Proof. Let E ⊆ Rd. We know that E is compact if and only if it is complete
and totally bounded. Because Rn is complete, we know that E is complete if
and only if it is closed. Moreover, by the previous lemma, E is totally bounded
if and only if it is bounded. Hence, E is compact if and only if it is closed and
bounded.

Remark. For a general metric space, a compact set must be closed and bounded,
but the converse is not true.

The next results allow us to test when E is compact.

Lemma 1.17. Let X be a metric space and E ⊆ X. If E is totally bounded,
then E is totally bounded.

Proof. Let r > 0. Since E is totally bounded, E can be covered by finitely
many balls (B(x, r/2))x∈F . Let B(x, r/2) be the closed ball of radius r/2, and
recall that this is a closed set. Since a finite union of closed sets is closed,
we know

⋃
x∈F B(x, r/2) is closed. Now since E ⊆

⋃
x∈F B(x, r/2), which is

closed, we know that E ⊆
⋃
x∈F B(x, r/2). Clearly, B(x, r/2) ⊆ B(x, r) and

hence E ⊆
⋃
x∈F B(x, r). Thus, E is totally bounded.

Lemma 1.18. Suppose that X is a complete metric space. If E ⊆ X is totally
bounded, then E is compact.

Proof. By the previous lemma, E is totally bounded. Also, since X is complete
and E is closed, we know E is complete. Thus, E is complete and totally
bounded, hence compact.

2 Consequences of Compactness

In this section, we prove various well-known and useful consequences of com-
pactness (see for instance [?, chapter 2] and [?]). We present two proofs of each
result, one using open covers and one using sequences. By examining these
parallel proofs, we hope the reader will get a better intuitive grasp on why
compactness and sequential compactness are equivalent.

2.1 Closed Subsets of Compact Sets

Proposition 2.1. Suppose that X is a compact metric space and E ⊆ X is
closed. Then E is compact.

Covering proof. Suppose that (Uα)α∈I is an open cover of E. Since E is closed
Ec = X \ E is open. Thus, (Uα)α∈I ∪ {Ec} is an open cover of X, since
X = E ∪Ec ⊆

⋃
α∈I Uα∪Ec. Since X is compact, there exists a finite subcover

of X. This finite subcover will certainly cover E. If this finite subcover includes
the Ec, we may delete Ec from it and the remaining sets will still cover E.
Thus, (Uα)α∈I contains a finite subcover of E.
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Sequential proof. Suppose (xn)n∈N is a sequence in E. Then (xn)n∈N is also
a sequence in X, and by compactness of X, there is a subsequence (xnk

)k∈N
that converges to some x0 ∈ E. Because E is closed, we know that x0 ∈ E.
Therefore, (xn)n∈N has a subsequence that is convergent in E. Because (xn)n∈N
was an arbitrary sequence in E, we know that E is compact.

2.2 Images Under Continuous Functions

Proposition 2.2. If X and Y are metric spaces, f : X → Y is continuous,
and E ⊆ X is compact, then f(E) is compact.

Covering proof. Suppose that (Uα)α∈I is an open cover of f(E). Because f is
continuous, we know that f−1(Uα) is open in X. Moreover, (Uα)α∈E covers E,
because if x ∈ E, then f(x) is in one of the Uα’s, and hence x ∈ f−1(Uα).

Because E is compact, there exists a finite set F ⊆ I such that E ⊆⋃
α∈F f

−1(Uα). Then we claim that (Uα)α∈F cover f(E). Indeed, if y ∈ f(E),
then y = f(x) for some x ∈ E. By assumption x is contained in f−1(Uα) for
some α ∈ F . But that means that f(x) ∈ Uα, that is, y ∈ Uα. Therefore,
(Uα)α∈F is the desired finite subcover.

Sequential proof. Suppose that (yn)n∈N is a sequence in f(E). Then by def-
inition of f(E), we have yn = f(xn) for some xn ∈ E. Because E is com-
pact, the sequence (xn)n∈N has a subsequence (xnk

)k∈N that converges to some
point x0 ∈ E. By continuity of f , we have f(xnk

) → f(x0), which means
that ynk

→ f(x0) ∈ f(E). Thus, (yn)n∈N has a convergent subsequence as
desired.

Proposition 2.3. Let X be a metric space and f : X → R be continuous. Then
f achieves a maximum and a minimum on X and hence is a bounded function.

Proof from the previous result. Because f is continuous and X is compact, the
previous proposition shows that f(X) is a compact subset of R. So f(X) is
closed and bounded. Since f(X) is bounded, it has a finite supremum and
infimum. Because f(X) is closed, the supremum and infimum must be in the
set f(X), and hence they are achieved by the function f .

Direct sequential proof. By basic properties of the supremum, there exists a se-
quence (xn)n∈N such that f(xn)→ supx∈X f(x). By compactness, the sequence
(xn)n∈N has a subsequence (xnk

)k∈N that converges to some x0 ∈ X. Then
f(xnk

) → f(x0). Hence, f(x0) = supx∈X f(x), so f achieves a maximum.
Similarly, f achieves a minimum.

2.3 Continuity Implies Uniform Continuity

Proposition 2.4. Suppose that X and Y are metric spaces, X is compact, and
f : X → Y is continuous. Then f is uniformly continuous.
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Covering Proof. To prove uniform continuity, choose some ε > 0. Then for each
ξ ∈ X, there exists δξ > 0 such that

d(x, ξ) < δ =⇒ d(f(x), f(ξ)) < ε/2.

Note that the balls (BX(ξ, δξ/2))ξ∈X are an open cover of X. By compact-
ness, there exists a finite set F ⊆ X such that X =

⋃
ξ∈F BX(ξ, δξ). Let

δ = minξ∈F δξ/2.
Suppose that x, x′ ∈ X with d(x, x′) < δ. Then x must be in BX(ξ, δξ/2)

for some ξ ∈ F . Hence,
d(x, ξ) < δξ/2 < δξ

and
d(x′, ξ) ≤ d(x′, x) + d(x, ξ) < δ + δξ/2 ≤ δξ.

Therefore, by our choice of δξ, we have d(f(x), f(ξ)) < ε/2 and d(f(x′), f(ξ)) <
ε/2. So by the triangle inequality, d(f(x′), f(x)) < ε.

Overall, we have obtained a δ such that d(x, x′) < δ implies d(f(x), f(x′)) <
ε. Thus, f is uniformly continuous.

Sequential proof. Suppose for the sake of contradiction that f is not uniformly
continuous. That means that there exists an ε > 0 such that for every δ > 0,
there exist x and x′ such that d(x, x′) < δ but d(f(x), f(x′)) ≥ ε. In particular,
for each n ∈ N, we may take δ = 1/n, and thus there exist xn and x′n such that
d(xn, x

′
n) < 1/n but d(f(xn), f(x′n)) ≥ ε.

By compactness, the sequence (xn)n∈N has a subsequence (xnk
)k∈N that

converges to a point x0 ∈ X. Note that

d(x′nk
, x0) ≤ d(x′nk

, xnk
) + d(xnk

, x0) ≤ 1

nk
+ d(xnk

, x0)→ 0.

Therefore, (x′nk
)k∈N also converges to x0. Because f is continuous, we have

f(xnk
)→ f(x0), f(x′nk

)→ f(x0).

Since the distance function is continuous, it follows that

d(f(xnk
), f(x′nk

))→ d(f(x0), f(x0)) = 0.

But this contradicts the fact that d(f(xnk
), f(x′nk

)) ≥ ε for all k.

2.4 Uniform Convergence of Monotone Sequences

Proposition 2.5. Let X be a compact metric space. Suppose that fn : X →
[0,+∞) is continuous, fn+1 ≤ fn, and fn → 0 pointwise. Then fn → 0 uni-
formly.
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Covering proof. Fix ε > 0. Let Un = {x ∈ X : fn(x) < ε}. Then Un =
f−1
n ((−∞, ε)) and hence Un is open. Note that (Un)n∈N is an open cover of X;

indeed, if x ∈ X, then fn(x) → 0 and hence fn(x) < ε for sufficiently large n,
which means that x ∈ Un.

By compactness (Un)n∈N has a finite subcover, so there exists F ⊆ N finite
with X =

⋃
n∈F Un. Now because fn+1 ≤ fn, we have Un+1 ⊆ Un. Thus, if

we let N = maxF , then X =
⋃
n∈F Un = UN . Now if n ≥ N , then fn(x) ≤

fN (x) < ε for all x. Thus, fn → 0 uniformly.

Sequential proof. Suppose for contradiction that fn does not converge uniformly
to zero. Then there exists an ε > 0 such that for every N , there exists n ≥ N
and x ∈ X such that fn(x) ≥ ε. Now given N , we know there exists n ≥ N and
x ∈ X such that fn(x) ≥ ε, but we also have fN (x) ≥ fn(x). Thus, for every
N , there exists xN such that fN (xN ) ≥ ε.

By compactness, the sequence (xn)n∈N must have a subsequence (xnk
)k∈N

that converges to some x0 ∈ X. Now since limn→∞ fn(x0) = 0, there exists N
such that fn(x0) < ε for n ≥ N and in particular, fN (x0) < ε. Because fN is
continuous, we have

lim
k→∞

fN (xnk
) = fN (x0) < ε.

In particular, for sufficiently large k, we have fN (xnk
) < ε. But if k is sufficiently

large, we also have nk ≥ N and hence

fnk
(xnk

) ≤ fN (xnk
) < ε,

which contradicts our choice of (xn)n∈N.

3 The Arzela-Ascoli Theorem

3.1 The Space of Continuous Functions

Let X be a compact metric space. Let C(X;R) denote the space of continuous
functions X → R. For f ∈ C(X;R), denote

‖f‖∞ = sup
x∈X
|f(x)|.

Because X is compact, a continuous function must achieve a maximum and a
minimum and therefore ‖f‖∞ is always finite. One can check that ‖·‖∞ satisfies
the following axioms:

1. ‖f‖∞ = 0 if and only if f = 0.

2. ‖cf‖∞ = |c| ‖f‖∞ for c ∈ R.

3. ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.
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In other words, (C(X;R), ‖·‖∞) is a normed vector space. It follows from these
axioms that

d∞(f, g) := ‖f − g‖∞
defines a metric on C(X;R).

Lemma 3.1. C(X;R) is complete with respect to the metric d∞.

Proof. Suppose that (fn)n∈N is a Cauchy sequence. For each x ∈ X and for
each m,n ∈ N, we have

|fm(x)− fn(x)| ≤ d∞(f, g).

It follows that for each x ∈ X, the sequence (fn(x))n∈N is a Cauchy sequence
of real numbers. Because R is complete, this sequence converges. We define
f(x) = limn→∞ fn(x).

By construction fn converges pointwise to f , but we claim that in fact fn
converges uniformly to f . Suppose that ε > 0. Then there exists N such that

m,n ≥ N =⇒ d∞(fm, fn) ≤ ε.

In particular, if m,n ≥ N , then for each x ∈ X, we have

|fm(x)− fn(x)| ≤ ε.

We know that fm(x)→ f(x) as m→∞ and hence for n ≥ N and x ∈ X,

|f(x)− fn(x)| ≤ ε.

Since this holds for all x, we may take the supremum over X and hence

n ≥ N =⇒ ‖fn − f‖∞ ≤ ε.

Since ε was arbitrary, we have shown that fn → f uniformly.
Next, we show that f is continuous. Suppose that x0 ∈ X and ε > 0. By

uniform convergence, there exists N such that n ≥ N implies that ‖fn − f‖∞ ≤
ε/3. In particular, ‖fN − f‖∞ ≤ ε/3. Because fN is continuous, there exists
δ > 0 such that

|x− x0| < δ =⇒ |fN (x)− fN (x0)| < ε/3.

Therefore, if |x− x0| < δ, we have

|f(x)−f(x0)| ≤ |f(x)−fN (x)|+|fN (x)−fN (x0)|+|fN (x0)−f(x0)| ≤ ε

3
+
ε

3
+
ε

3
= ε.

Therefore, f is continuous. We have shown that d∞(fn, f) → 0 and hence our
Cauchy sequence (fn)n∈N converges in (C(X;R), d∞).
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3.2 Proof of Arzela-Ascoli

Let X be a compact metric space. When is a set E ⊆ C(X;R) compact? Recall
that a set is compact if and only if it is complete and totally bounded. We
also know that C(X;R) is complete, and hence E is complete if and only if it is
closed in d∞. Thus, we are left with the question of when a set E ⊆ C(X;R) is
totally bounded. The next theorem will answer this question.

Definition 3.2. Let E ⊆ C(X;R). Then we say E is pointwise bounded if for
every x ∈ X, the set {f(x) : f ∈ E} is a bounded subset of R, or equivalently,

sup
f∈F
|f(x)| < +∞.

Definition 3.3. Let E ⊆ C(X;R). Then we say that E is equicontinuous if for
every x0 ∈ X and ε > 0, there exists δ > 0 such that

d(x, x0) < δ =⇒ |f(x)− f(x0)| for all x ∈ X and f ∈ E .

Remark. The point of equicontinuity is that the same δ will work for all the
functions in the set E .

Theorem 3.4. Let X be a compact metric space, and let E ⊆ C(X;R). Then
E is totally bounded in d∞ if and only if it is equicontinuous and pointwise
bounded.

This theorem and its proof standard and can be found for instance in [?,
§4.6] and [?, §11.4].

Proof. ( =⇒ ) Suppose E is totally bounded. Then it must be bounded with
respect to d∞. Therefore, there exists some f0 ∈ E and R > 0 such that
E ⊆ Bd∞(f0, R). Let M = ‖f0‖∞ + R. Then we have ‖f‖∞ ≤ M for all
f ∈ E . In particular, |f(x)| ≤ M for all f ∈ E and x ∈ X, and hence the set
{f(x) : f ∈ E} ⊆ R is bounded for each x ∈ X. (This proof in fact shows E is
uniformly bounded since the M does not depend on x.)

Next, let us show that E is equicontinuous. Let x0 ∈ X and ε > 0. By
assumption, E can be covered by finitely many balls of radius ε/3; call them
Bd∞(f1, ε/3), . . . , Bd∞(fn, ε/3). For each fk, there is a δk such that

d(x, x0) < δk implies |fk(x)− fk(x0)| < ε/3 for all x ∈ X.

Let δ = min(δ1, . . . , δn). Every f ∈ E is contained in some ball Bd∞(fk, ε/3),
which implies ‖fk − f‖ < ε/3. If d(x, x0) < δ ≤ δk, then we have

|f(x)− f(x0)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(x0)|+ |fk(x0)− f(x0)|
≤ ‖f − fk‖∞ + |fk(x)− fk(x0)|+ ‖f − fk‖∞
< ε.

Since the same δ works for all f , we have equicontinuity.
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(⇐= ) Assume that E is equicontinuous and pointwise bounded. To prove it
is totally bounded, suppose that r > 0. By equicontinuity, for each x ∈ X, there
is a δx such that d(y, x) < δx implies |f(y)− f(x)| < r/4 for all f ∈ E . Now the
open balls {BX(x, δx)}x∈X are an open cover of the space X. By compactness
of X, there exists a finite subcover, call it (BX(xj , δxj

))mj=1. By pointwise
boundedness, for each j = 1, . . . ,m there is an Mj such that |f(xj)| ≤ Mj

for all f ∈ E . Let M = max(M1, . . . ,Mm). Now [−M,M ] is a bounded set in R
and hence it is totally bounded. Thus, it can be covered by finitely many balls
BR(y1, r/4), . . . , BR(yn, r/4).

Let A = {x1, . . . , xm} and B = {y1, . . . , yn}. Let BA be the set of functions
φ : A→ B, which is a finite set because A and B are finite. Let

Eφ = {f ∈ E : f(xj) ∈ BR(φ(xj), r/4) for j = 1, . . . ,m}.

Here φ(xj) is one of the yk’s. Note that every function f ∈ E must be in one
of the sets Eφ. Indeed, for each j, f(xj) must be in one of the balls BR(yk, r/4)
because these balls were chosen to cover [−M,M ], and we may define φ(xj) to
be this yk. Thus, we have

E =
⋃

φ∈BA

Eφ.

Of course, if we let Φ = {φ ∈ BA : Eφ 6= ∅}, then we still have

E =
⋃
φ∈Φ

Eφ.

For each φ ∈ Φ, pick one function fφ ∈ Eφ. We claim that Eφ ⊆ Bd∞(fφ, r).
Indeed, suppose that f ∈ Eφ and x ∈ X. Then x is contained in one of the balls
B(xj , δxj

). By our choice of δxj
, this implies that

|f(x)− f(xj)| < r/4, |fφ(x)− fφ(xj)| < r/4.

By the definition of Eφ, we know that f(xj) and fφ(xj) are in BR(φ(xj), r/4)
and hence

|f(xj)− φ(xj)| < r/4, |fφ(xj)− φ(xj)| < r/4.

By the triangle inequality,

|f(x)−fφ(x)| ≤ |f(x)−f(xj)|+|f(xj)−φ(xj)|+|φ(xj)−fφ(xj)|+|fφ(xj)−fφ(x)| < r.

Hence, for all x, we have |f(x) − fφ(x)| < r. Now |f(x) − fφ(x)| achieves a
maximum on X and this maximum must be less than r, and hence ‖f − fφ‖∞ <
r. This shows that f ∈ Bd∞(fφ, r), and therefore, Eφ ⊆ Bd∞(fφ, r).

We know that E is the union of the Eφ’s and each Eφ is contained inBd∞(fφ, r).
Therefore,

E ⊆
⋃

φ∈BA

Bd∞(fφ, r).

Since r was arbitrary, we have shown that E is totally bounded.
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3.3 Variants and Corollaries

Corollary 3.5. Suppose that X is a compact metric space and E ⊆ C(X;R).
Then E is compact if and only if it is closed (in d∞), equicontinuous, and point-
wise bounded.

Proof. As remarked earlier, C(X;R) is complete. Hence, E is complete if and
only if it is closed. Theorem 3.4 shows that E is totally bounded if and only if
it is equicontinuous and pointwise bounded.

Corollary 3.6. Suppose that X is a compact metric space and E ⊆ C(X;R).
If E is equicontinuous and pointwise bounded, then E is compact.

Proof. By Theorem 3.4, we know that E is totally bounded. Since C(X;R) is
complete, Lemma 1.18 shows that E is compact.

Corollary 3.7. Let X be a compact metric space. If (fn)n∈N is a sequence
in C(X;R) which is equicontinuous and pointwise bounded, then there exists a
uniformly convergent subsequence.

Proof. Let E = {fn : n ∈ N} ⊆ C(X;R). The sequence being equicontinuous
and pointwise bounded means exactly that the set E is equicontinuous and
pointwise bounded. By the previous Corollary, E is compact in d∞. Since
(fn)n∈N is a sequence in E , it must have a convergent subsequence with respect
to d∞.

Corollary 3.8. Let X be a compact metric space. If (fn)n∈N is a sequence in
C(X;R) that converges uniformly, then (fn)n∈N is equicontinuous and pointwise
bounded.

Proof. Let f be the limit of the sequence fn. Let E = {fn : n ∈ N} ∪ {f}.
Then E is totally bounded in d∞. Indeed, given r > 0, there exists N such that
n ≥ N implies d∞(fn, f) < r. Therefore,

E ⊆ Bd∞(f, r) ∪
N−1⋃
j=1

Bd∞(fj , r).

Thus, E is totally bounded. Hence, by Theorem 3.4, E is equicontinuous and
pointwise bounded.
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