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Motivation

We will discuss Voiculescu’s free entropy of a non-commutative law µ of
an m-tuple. This is an analogue in free probability theory of the
continuous entropy of a probability measure.

Voiculescu defined two types of free entropy, χ(µ) and χ∗(µ). They both
measure the “regularity” of the law µ.

They are based on two different viewpoints for classical entropy: χ is
based on the microstates interpretation of entropy and is defined by
“counting” matrix approximations to µ, while χ∗ is defined in terms of
free Fisher information, which describes how µ interacts with derivatives.
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Motivation

Problem

When does χ = χ∗?

Theorem (Biane, Capitaine, Guionnet 2003)

χ(µ) ≤ χ∗(µ).

Until recently, the problem was unresolved even for convex Gibbs laws µ.
These Gibbs laws are the free analogue of (1/Z )e−V (x) dx , and are the
best understood non-commutative laws.

Theorem (Dabrowski 2017, J. 2018)

If µ is a free Gibbs state given by a nice enough convex potential V , then
χ(µ) = χ∗(µ).
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Background: Free Probability
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What is non-commutative probability?

classical non-commutative

L∞(Ω,P) W ∗-algebra M
expectation E trace τ

bdd. real rand. var. X self-adjoint X ∈ M
law of X spectral distribution of X w.r.t. τ
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What is free probability?

We replace classical independence by free independence.

Definition by Example

For groups G1 and G2, the algebras L(G1) and L(G2) are freely
independent in (L(G1 ∗ G2), τ).

Free Central Limit Theorem: There’s a free central limit theorem with
normal distribution replaced by semicircular distribution.

Free Convolution: If X and Y are classically independent, then
µX+Y = µX ∗ µY . If X and Y are freely independent, then
µX+Y = µX � µY .
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What is the law of a tuple?

Classically, the law of X = (X1, . . . ,Xm) is a measure on Rm given by

µX (A) = P(X ∈ A).

Assuming finite moments, this can be viewed as a map

µX : C[x1, . . . , xm]→ C, p(x1, . . . , xm) 7→ E [p(X1, . . . ,Xm)].

In the non-commutative case, the law of X = (X1, . . . ,Xm) ∈ Mm
sa is

defined as the map

µX : C〈x1, . . . , xm〉 → C, p(x1, . . . , xm) 7→ τ [p(X1, . . . ,Xm)],

The moment topology on laws is given by pointwise convergence on
C〈x1, . . . , xm〉.
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Background: Microstates Free Entropy χ
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What is classical entropy?

The continuous entropy of a probability measure dµ(x) = ρ(x) dx on Rm

is given by

h(µ) = −
∫
ρ log ρ.

If µ does not have a density, we set h(µ) = −∞.

“Entropy measures regularity.”

1 If µ is highly concentrated, then there is large negative entropy.

2 For mean zero and variance 1, the highest entropy is achieved by
Gaussian.

3 If you smooth µ out by convolution, the entropy increases.
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Microstates Interpretation

Since there’s no nice integral formula for entropy in the free case, the
definition of χ is based on the microstates interpretation.

Classical case: Given a vector in x = (x1, . . . , xm) ∈ (RN)m, let’s define its
empirical distribution as

µx =
1

N

N∑
j=1

δ((x1)j ,...,(xm)j ).

Then {x : µx is close to µ} has measure approximately exp(−Nh(µ)).
Thus, h(µ) can be expressed as

inf
(nbhd’s of µ)

lim
N→∞

1

N
log vol{x : µx close to µ}.

Intuition: If µ is more regular and spread out, then there are more
microstates because most choices of N vectors are “evenly distributed.”
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Microstates Free Entropy

Idea for free case: Replace RN (self-adjoints in L∞({1, . . . ,N})) by
MN(C)sa.

Given (x1, . . . , xm) ∈ MN(C)m, the empirical distribution µx is the
non-commutative law of x w.r.t. normalized trace on MN(C). For a
neighborhood U of µ in the moment topology and R > 0, define

ΓN,R(U) = {x : ‖xj‖ ≤ R and µ ∈ U}.

Define

χ(µ) = sup
R>0

inf
U3µ

lim sup
N→∞

(
1

N2
log vol ΓN,R(U) +

m

2
logN

)
.

(Voiculescu) χ has properties similar to h, and also relates to properties of
the W ∗-algebra generated by a tuple with the law µ.
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Background: Non-microstates Free Entropy χ∗
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Classical Fisher Information

Classical case: Let µ be a probability measure on Rm with density ρ. Let
γt be the law of a Gaussian random vector with variance tI . Then

d

dt
h(µ ∗ γt) =

∫
|∇ρt |2/ρt = ‖∇ρt/ρt‖2L2(µ∗γt).

The quantity ‖∇ρt/ρt‖2L2(µ∗γt) is called the Fisher information of µ ∗ γt .
The entropy can be recovered by integrating the Fisher information.

Intuition: The Fisher information measures the regularity of µ by looking
at its derivatives.
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Non-Microstates Free Entropy

In the free case, we don’t know an analogue of density, so we want to
rephrase the definition using integration by parts.

Classical Fisher information is L2 norm of the conjugate variable
ξ = (∇ρ/ρ)(X ), which is characterized by an integration-by-parts formula
E [ξf (X )] = E [∇f (X )].

Voiculescu used the free version τ [ξj f (X )] = τ ⊗ τ [DXj
f (X )] to define the

free conjugate variables and hence the free Fisher information.

χ∗(µ) is defined by integrating the free Fisher information of µ� σt ,
where σt is the law of a free semicircular family where each variable has
mean zero and variance t.
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Background: Free Gibbs Laws
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Free Gibbs Laws

Classically, a Gibbs measure on Rm is a measure of the form
(1/Z )e−V (x) dx . This can be characterized by the equation∫

∂jV · f dµ =

∫
∂j f dµ.

If g(X ) is a non-commutative polynomial in X1, . . . , Xm, then µ is said to
be a free Gibbs law for g if

µ[D◦j g(X )f (X )] = µ⊗ µ[Dj f (X )],

where D◦j v(X ) is the cyclic derivative with respect to Xj . In other words,
D◦g(X ) is the conjugate variable of X with respect to µ.
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Free Gibbs Laws

(Guionnet, Maurel-Segala, Shylakhtenko, Dabrowski) If g(X ) is a small (or
a convex) perturbation of (1/2)

∑
j X

2
j , then there exists a unique free

Gibbs law for g .

These Gibbs laws also have good random matrix models. Let’s just look at
the case where g(X ) is uniformly convex (globally). Define a random
matrix model µN (a probability measure on MN(C)msa) by

dµN(x) =
1

ZN
e−N Tr(g(x)) dx ,

where dx is Lebesgue measure. If XN is a random variable given by µN ,
then the non-commutative laws of XN converge almost surely to µ as
N →∞.
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Free Gibbs Laws

(Herbst, Bakry-Emery, Ledoux, Guionnet, Maurel-Segala, . . . ) Moreover,
since g(x) is uniformly convex, the measures µN satisfy log-Sobolev
inequalities and concentration of measure.

Specifically, if f is a real-valued function that is Lipschitz in ‖·‖2, then
f (XN) is exponentially unlikely to be more than δ away from its
expectation.

Also, in this case, the operator norm XN − E [XN ] is bounded by some
constant R with very high probability, so as N → +∞, we can restrict our
measures to operator norm balls without losing much.
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Notation

τN is the normalized trace on MN(C).

‖·‖2 is the corresponding 2-norm, that is, for x ∈ MN(C)msa, we set
‖x‖22 =

∑m
j=1 τN(x2j ).

‖·‖ is the operator norm.

σN,t denotes the law of m independent N × N GUE matrices which each
have mean zero and variance t.

σt denotes the non-commutative law of m freely independent semicirculars
which each have mean zero and variance t.
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Setup

Consider a sequence of potentials VN : MN(C)msa → R that are uniformly
convex and semi-concave, that is, for some 0 < c < C , we have

VN(x)− c

2
‖x‖22 convex and VN(x)− C

2
‖x‖22 concave.

Let µN be the probability measure on MN(C)msa given by

dµN(x) =
1

ZN
e−N

2VN(x) dx

where dx is Lebesgue measure and ZN is a normalizing constant.
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Setup

For example, if g(x) is a non-commutative polynomial in x1, . . . , xm, then
we could take VN(x) = τN(g(x)). In this case, the gradient of VN (with
respect to the ‖·‖2 given by the normalized trace) would be

DVN(x) = D◦g(x)

We won’t assume that VN has this form, or that it is unitarily invariant on
the nose. Rather, we will use the more flexible assumption that the
gradients DVN can be approximated on operator norm balls by trace
polynomials. (Precise definition later.)
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Results

Theorem

Let VN be uniformly convex and semi-concave as above (note that the
standard concentration results apply). Suppose that the sequence of
normalized gradients DVN is asymptotically approximable by trace
polynomials. Suppose that the expected values

∫
x dµN are bounded in

operator norm as N →∞. Then

1 µ(p) := limN→∞
∫
τN(p(x)) dµN(x) exists for every non-commutative

polynomial p.

2 The non-commutative law µ has finite free Fisher information and
finite free entropy.

3 χ(µ) = χ∗(µ) = limN→∞[N−2h(µN) + (m/2) logN].

4 The normalized Fisher information of µN ∗ σN,t converges to the free
Fisher information of µ� σt for every t ≥ 0.

5 The free Fisher information is locally Lipschitz in t.
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Approach

The quantities we want to study (
∫
φ(x)µN(x) or Fisher information

of µN ∗ σN,t) can be expressed by solving some PDE (parallel to SDE
approach of Dabrowski, Guionnet, Shlyakhtenko).

We want to show that the solution at a given time t is asymptotically
approximable by trace polynomials (AATP).

AATP is preserved under certain operations, and by combining /
iterating these simple operations we can build an approximation to
the solution.

We give dimension-independent estimates for the errors in the
approximation.

Hence, the solution has AATP.
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Approach

We can apply this strategy to several different situations:

1 By studying the diffusion associated to VN , we can analyze∫
φ(x) dµN(x) for test functions φ, and thus prove that the limit as

N →∞ of the laws exists.

2 By studying the evolution of the potential VN as we convolve µN with
Gaussians, we get a handle on the conjugate variables for µN ∗ σN,t ,
and hence on the Fisher information.

3 (Future work.) The same idea as (1) can be applied to study the
conditional expectation of φ(X ) given X1, . . . , Xr for some r < m.

4 (Future work.) Using what we know from (2), we can construct a
transport map from µN ∗ σN,t to Gaussian, and hence in the limit, we
can establish free transport to semicircular for the law µ.
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Asymptotic Approximation by Trace Polynomials
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Trace Polynomials

Trace polynomials in x1, . . . , xm are linear combinations of functions of
the form p0τ(p1) . . . τ(pn) where pj is a non-commutative polynomial in
x1, . . . , xm. For example,

τ(x1x2)x1 + 3τ(x22 )τ(x1x3)x3x2 + 5τ(x23 )

If p is a trace polynomial, then p defines a function MN(C)msa → MN(C).
We interpret τ as the normalized trace on MN(C) and evaluate p at the
point x .

More generally, if (M, τ) is a tracial von Neumann algebra, then p defines
a map Mm

sa → M.
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Asymptotic Approximation by Trace Polynomials

Definition

A sequence of functions φN : MN(C)msa → MN(C)msa is asymptotically
approximable by trace polynomials if for every ε > 0 and R > 0, there
exists an m-tuple of trace polynomials f such that

lim sup
N→∞

sup
x∈MN(C)msa
‖xj‖≤R

‖φN(x)− f (x)‖2 ≤ ε.
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Linear Combinations and Limits

AATP is preserved by various natural operations. Obviously, it’s preserved
under linear combinations. Also, you can take limits.

Lemma

Suppose that φN,k is a bi-indexed sequence of functions and φN another
sequence. If (φN,k)N∈N has AATP for each k and if for every R > 0, we
have

lim
k→0

lim sup
N→∞

sup
‖x‖≤R

‖φN,k − φN‖2 = 0,

then (φN)N∈N also has AATP.

The proof is trivial.
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Convolution with Gaussian

Lemma

Suppose that φN : MN(C)msa → MN(C)msa has AATP. Suppose that
‖φN,t(x)‖2 has some reasonable growth as x →∞, for instance,
‖φN,t(x)‖2 ≤ A + B‖x‖α is sufficient. Then φN ∗ σN,t also has AATP for
each t, where σN,t is the GUE measure.

Proof.

Fix R > 0. Choose a trace polynomial f that asymtotically approximates
φN(x) within ε for ‖x‖ ≤ R + 3t1/2. Since GUE has operator norm
bounded by 2t1/2 with high probability (with good tail bounds), we see
that ‖f ∗ σN,t − φN ∗ σN,t‖2 → 0 uniformly on ‖x‖ ≤ R. We can explicitly
compute the convolution of GUE with a given trace polynomial f , and this
is a trace polynomial which depends on N but has a limit as N → +∞. So
f ∗ σN,t provides an ε-approximation for φN ∗ σN,t on the ball of radius
R.
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Composition

Lemma

Suppose that φN : MN(C)msa → MN(C)msa and ψN : MN(C)msa → MN(C)msa
have AATP. Suppose that φN is uniformly continuous in ‖·‖2 (uniformly in
N). Then φN ◦ ψN has AATP.

Proof.

Fix R and ε. Choose δ so that ‖x − y‖2 < δ implies
‖φN(x)− φN(y)‖ < ε/2. Then choose a trace polynomial g which is an
asymptotic δ-approximation of ψN on ‖x‖ ≤ R. For ‖x‖ ≤ R, the function
g is bounded in operator norm by some R ′. Let f be asymptotic
ε/2-approximation of φN on ‖x‖ ≤ R ′. Then

‖φN ◦ ψN − f ◦ g‖2 ≤ ‖φN ◦ ψN − φN ◦ g‖2 + ‖φN ◦ g − f ◦ g‖2.

As N → +∞, the sup of each term on ‖x‖ ≤ R is bounded by ε/2.

David A. Jekel (UCLA) Free Entropy Jan. 28, 2019 32 / 55



Composition

Lemma

Suppose that φN : MN(C)msa → MN(C)msa and ψN : MN(C)msa → MN(C)msa
have AATP. Suppose that φN is uniformly continuous in ‖·‖2 (uniformly in
N). Then φN ◦ ψN has AATP.

Proof.

Fix R and ε. Choose δ so that ‖x − y‖2 < δ implies
‖φN(x)− φN(y)‖ < ε/2. Then choose a trace polynomial g which is an
asymptotic δ-approximation of ψN on ‖x‖ ≤ R. For ‖x‖ ≤ R, the function
g is bounded in operator norm by some R ′. Let f be asymptotic
ε/2-approximation of φN on ‖x‖ ≤ R ′. Then

‖φN ◦ ψN − f ◦ g‖2 ≤ ‖φN ◦ ψN − φN ◦ g‖2 + ‖φN ◦ g − f ◦ g‖2.

As N → +∞, the sup of each term on ‖x‖ ≤ R is bounded by ε/2.

David A. Jekel (UCLA) Free Entropy Jan. 28, 2019 32 / 55



Ordinary Differential Equations

Lemma

Let φN(x , t) be a function MN(C)msa × [0,T ]→ MN(C)msa. Suppose that
φN is globally Lipschitz in (x , t) and that φN(·, t) is AATP for each t. Let
ψN solve the equation

∂tψN(x , t) = φN(ψN(x , t), t)

and suppose that ψN(·, 0) has AATP. Then ψN(·, t) has AATP for each t.
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Ordinary Differential Equations

Sketch of proof.

The solution ψN(x , t) can be evaluated through Picard iteration. Since
φN(x , t) is Lipschitz in (x , t) and AATP for each fixed t, we know that for
R, ε > 0, there is a function f (x , t) that is piecewise constant in each t
and is a trace polynomial for each x , such that

lim sup
N→∞

sup
‖x‖≤R,t∈[0,T ]

‖φN(x , t)− f (x , t)‖2 ≤ ε.

This property is preserved by the composition and integration operations
of Picard iteration.
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Convergence of Laws µN
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Goal

We need to prove that for a non-commutative polynomial p, the limit
limN→∞

∫
τN(p) dµN exists. It’s more convenient to replace p by

something globally Lipschitz. For instance, let f : R→ R be a C∞c
function such that f (x) = x for |x | ≤ R, and consider

φ(x) = τN(p(f (x1), . . . , f (xm))).

If R is large enough, then
∫
τN(p)− φ dµN → 0. Also, φ is globally

Lipschitz in ‖·‖2 and it has AATP.
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Goal

So it suffices to prove the following statement:

Theorem

Suppose that φN : MN(C)msa → R is AATP. Then limN→∞
∫
φN dµN exists.
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Strategy

The fact that DVN has AATP is the only assumption that relates the
potentials VN for different values of N. Thus, we’ll need to evaluate∫
φN dµN in terms of φN and DVN .

Various papers have considered µN as the stationary distribution of the
SDE

dXt = dBt −
1

2
DVN(Xt) dt,

where Bt is a GUE Brownian motion.
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Strategy

The PDE viewpoint is that if uN solves

uN(x , 0) = φN(x)

∂tuN =
1

2N
∆uN −

1

2
〈DuN ,DVN〉,

then

lim
N→∞

uN(x , t) =

∫
φN dµN for all x .
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The first term

We consider the two terms on the right hand side separately. If we
removed the DVN term, we would have the heat equation

∂tu =
1

2N
∆u.

This equation can be solved by application of the heat semigroup
Ptφ = φ ∗ σN,t . We already showed that Pt preserves AATP.
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The second term

If we only considered the second term of the equation, we would have

∂tu = −1

2
〈Du,DVN〉.

This equation can be solved by the semigroup

Stφ(x) = φ(WN(x , t)),

where

WN(x , 0) = x and ∂tWN(x , t) =
1

2
DVN(WN(x , t)).

Since solving the ODE preserves AATP and so does composition, we know
that St preserves AATP.
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Trotter’s formula

As in Trotter’s formula, we want to define a semigroup Tt by

Ttφ = lim
n→∞

(Pt/nSt/n)nφ,

and we claim that Ttφ will solve the main PDE.

Actually, it’s more convenient to first define for dyadic rational values of t

Tk,t = (P1/2kS1/2k )2
k t .
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Trotter’s formula

Now we estimate ‖Tk,t − Tk+1,t‖L∞ . Note that Tk+1,t is obtained from
Tk,t by replacing each copy of P1/2kS1/2k with
P1/2k+1S1/2k+1P1/2k+1S1/2k+1 .

One can check directly that ‖SδPδφ− PδSδφ‖L∞ ≤ constδ3/2‖φ‖Lip.

So we must make O(2k) swaps and each one gives us an error O(2−3k/2).

The errors do not grow as they propagate through additional applications
of S1/2k and P1/2k because the operators Sδ and Pδ will not increase the
Lipschitz norm or L∞ norm of functions.

So the overall error between Tk,t and Tk+1,t is O(2−k/2). This is
summable in k , so we get convergence as k →∞.
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summable in k , so we get convergence as k →∞.
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Conclusion of the Proof

So the operators Tt are well-defined for dyadic t, but one can check
Hölder continuity in t, and hence extend them to all real t.

Then one checks that they give the solution to the PDE.

The operators Tt preserve AATP for Lipschitz functions.
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Conclusion of the Proof

We have
∫
TtφN dµN =

∫
φN dµN by a direct computation (and

justification).

Due to the uniform convexity of VN , we have

‖Stφ‖Lip ≤ e−ct/2‖φ‖Lip,

which follows from estimating the Lipschitz norm the function WN(x , t)
used to define St .

Thus, TtφN →
∫
φN dµN as N →∞ with a dimension-independent rate

of convergence. Since TtφN preserves AATP, we know that the sequence
of constant functions

∫
φN dµN has AATP.

But this just means that the sequence of constants has a limit as N →∞.
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Unification of Free Entropy
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Classical and Microstates Entropy

Lemma

χ(µ) = lim supN→∞(N−2h(µN) + (m/2) logN).

Sketch of proof:

Fix a large value of R. Because of the tail bounds on µN , the limiting
behavior of N−2h(µN) will be unchanged if we truncate µN to ‖x‖ ≤ R. If
we choose a neighborhood U of µ, then µN is concentrated on the
microstate space ΓN,R(U).
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Classical and Microstates Entropy

Since DVN has AATP, so does VN − VN(0). Since trace polynomials are
continuous with respect to convergence in moments, we see that VN is
approximately constant on the microstate space ΓN,R(U) if U is sufficiently
small. So we can approximate µN by the uniform distribution on the
microstate space, and hence approximate N−2h(µN) + (m/2) logN by
N−2 log |ΓN,R(U)|+ (m/2) logN.
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Convergence of Fisher Information

Lemma

If DVN has AATP, then the (normalized) classical Fisher information
converges to the free Fisher information (and the latter is finite).

Sketch of proof:

Suppose that fk is a sequence of trace polynomials which as k increases
provide better and better asymptotic approximations for DVN . Then fk
will converge in L2(µ) to some f . Also, f is a free conjugate variables for
µ since the fk ’s approximately satisfy the integration by parts formula.
Then we check that ‖DVN‖L2(µN) → ‖f ‖L2(µ).
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Convergence of Fisher Information

We know that h(µN) is given by integrating the classical Fisher
information, and χ∗ is given by integrating the free Fisher information.

So to prove N−2h(µN) + (m/2) logN → χ∗(µ), it suffices to show that
the classical Fisher information of µN ∗ σN,t converges to the free Fisher
information of µ� σt for each t.

By the last lemma, it suffices to show that the conjugate variables for
µN ∗ σN,t have AATP for each t.
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Evolution of Potentials

So we reduce the proof to the following claim:

Theorem

Let VN,t be the potential corresponding to µN ∗ σN,t . Then VN,t is convex
and semi-concave, and DVN,t has AATP.

Since the density of µN ∗ σN,t evolves according to the heat equation, we
can compute that

∂tVN,t =
1

2N
∆VN,t −

1

2
‖DVN,t‖22.
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Evolution of Potentials

We play the same game as before: Consider semigroups that would give
the first and the second term on the right hand side individually, and then
blend them together using Trotter’s formula.

We already know that the heat semigroup Pt corresponds to the Laplacian
operator (1/2N)∆VN,t .

Meanwhile, the equation ∂tu = −(1/2)‖u‖22 can be solved using the
Hopf-Lax inf-convolution semigroup

Qtu(x) = inf
y

[
u(y)− 1

2t
‖x − y‖22

]

David A. Jekel (UCLA) Free Entropy Jan. 28, 2019 52 / 55



Evolution of Potentials

We play the same game as before: Consider semigroups that would give
the first and the second term on the right hand side individually, and then
blend them together using Trotter’s formula.

We already know that the heat semigroup Pt corresponds to the Laplacian
operator (1/2N)∆VN,t .

Meanwhile, the equation ∂tu = −(1/2)‖u‖22 can be solved using the
Hopf-Lax inf-convolution semigroup

Qtu(x) = inf
y

[
u(y)− 1

2t
‖x − y‖22

]

David A. Jekel (UCLA) Free Entropy Jan. 28, 2019 52 / 55



Evolution of Potentials

We play the same game as before: Consider semigroups that would give
the first and the second term on the right hand side individually, and then
blend them together using Trotter’s formula.

We already know that the heat semigroup Pt corresponds to the Laplacian
operator (1/2N)∆VN,t .

Meanwhile, the equation ∂tu = −(1/2)‖u‖22 can be solved using the
Hopf-Lax inf-convolution semigroup

Qtu(x) = inf
y

[
u(y)− 1

2t
‖x − y‖22

]

David A. Jekel (UCLA) Free Entropy Jan. 28, 2019 52 / 55



Trotter’s formula

The operators Pt and Qt both preserve the class of functions that are
convex and C -semiconcave.

Also, for all such functions DVN,t is C -Lipschitz.

Based on these facts, we can do a bunch of explicit estimates and show
that

(P1/2kQ1/2k )2
k tu

converges as k →∞ to some Rtu for dyadic t.
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Trotter’s formula

Also, we can show that D(P1/2kQ1/2k )2
k tu converges as k →∞.

The semigroup Rt extends to all real t. Also, we can check that it gives a
viscosity solution to the PDE, and hence gives the unique smooth solution.

Some explicit estimates for the gradients show that Rtu is Hölder-1/2
continuous in t and this implies that the classical Fisher information is
Lipschitz in t (on compact time intervals).
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AATP

To show that DVN,t has AATP, it only remains to check that that if Du is
AATP, then so is D(Qtu).

To do this, we use the magical fact that

D(Qtu)(x) = Du(x − tD(Qtu)(x)).

This says that D(Qtu)(x) is the fixed point of the function
y 7→ Du(x − ty). SInce Du is C -Lipschitz, this will be a contraction for
small values of t.

The fixed point can thus be evaluated by iterating this function. Since
AATP is preserved by composition and limits, if uN has AATP, then
D(QtuN) has AATP for small t.

Since Qt is a semigroup, this can be extended to all t.
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