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The distinctions between continuity, uniform continuity, convergence, and
pointwise convergence deserve repeated explanation, since they are important
but easily confused.

Let’s compare the definitions. In the following, X and Y are metric spaces,
and f : X → Y and fn : X → Y are functions.

Continuity

• In continuity, you are only considering one function f (not a sequence of
functions).1

• Continuity describes how f(x) changes when you change x.

• It says that for each x0, if x is close to x0, then f(x) is close to f(x0).

• The definition reads: ∀x0 ∈ X,∀ε > 0,∃δ > 0 such that ∀x ∈ X,
d(x, x0) < δ implies d(f(x), f(x0)) < ε.

Uniform Continuity

• Uniform continuity is a stronger version of continuity. As before, you are
only considering one function f (not a sequence of functions).

• Uniform continuity describes how f(x) changes when you change x.

• If f is uniformly continuous, that means that if x is close to x0, then f(x)
is close to f(x0). Importantly, it requires that how close f(x) and f(x0)
are only depends on how close x and x0 are. The same estimate works for
all possible values of x and x0.

• The definition reads: ∀ε > 0,∃δ > 0 such that ∀x0 ∈ X,∀x ∈ X,
d(x, x0) < δ implies d(f(x), f(x0)) < ε.

1Well, maybe you have a sequence {fn} of continuous functions, but in that case, the
definition of continuity applies to each function fn independently. It only considers one
function at a time.
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• Note that the only thing that changed relative to the definition of conti-
nuity was that “∀x0” moved later, but this makes all the difference. In the
statement of continuity, putting x0 first allows the value of δ to depend
on both ε and x0, but for uniform continuity the value of δ only depends
on ε. Thus, you can make one choice of δ such that f(x) and f(x0) will
be uniformly close together for all values of x and x0 within a distance of
δ from each other.

Pointwise Convergence

• To discuss pointwise convergence fn → f , you need to have a sequence of
functions {fn}, not just one function.

• Convergence describes how fn(x) changes when you change n (but don’t
change x).

• fn → f pointwise means that for each x ∈ X, if n is large enough, then
fn(x) is close to f(x).

• The definition reads: ∀x ∈ X,∀ε > 0,∃N ∈ N such that n ≥ N implies
d(fn(x), f(x)) < ε.

Uniform Convergence

• Uniform convergence is a stronger version of convergence. To discuss
pointwise convergence fn → f , you need to have a sequence of functions
{fn}, not just one function.

• Uniform convergence describes how fn(x) changes when you change n (but
don’t change x).

• fn → f means tha if n is large enough, then fn(x) is close to f(x) uniformly
for all values of x.

• The definition reads: ∀ε > 0,∃N ∈ N such that ∀x ∈ X, n ≥ N implies
d(fn(x), f(x)) < ε.

• Note that the only thing that changed relative to the definition of pointwise
convergence was that “∀x” moved later, but this makes all the difference.
In the statement of convergence, putting x first allows the value of N to
depend on both ε and x, but for uniform converence the value of N only
depends on ε. Thus, you can make one choice of N such that fn(x) and
f(x) will be uniformly close together for all values of x whenever n ≥ N .

Examples and Theorems

• The following functions R→ R are uniformly continuous: x, sinx, 1/(1 +
x2), arctanx.
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• The following functions R → R are not uniformly continuous: x2, sinx2,
any polynomial of degree at least 2, ex.

• If fn is continuous for each n and fn → f uniformly, then f is continuous.

• If fn is continuous for each n and fn → f pointwise, then f might not be
continuous. For example, consider fn : R→ R given by

fn(x) =


0, x ≤ 0

nx, 0 ≤ x ≤ 1/n

1, x ≥ 1.

f(x) =

{
0, x ≤ 0,

1, x > 0.

Then fn → f pointwise but not uniformly.

• If fn is uniformly continuous and fn → f uniformly, then f is uniformly
continuous.

• If fn is uniformly continuous and fn → f pointwise, then f might not be
continuous, or f might be continuous and not uniformly continuous.
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