(Uniform) Continuity, (Uniform) Convergence

David Jekel

February 10, 2018

The distinctions between continuity, uniform continuity, convergence, and pointwise convergence deserve repeated explanation, since they are important but easily confused.

Let's compare the definitions. In the following, X and Y are metric spaces, and $f: X \rightarrow Y$ and $f_{n}: X \rightarrow Y$ are functions.

Continuity

- In continuity, you are only considering one function f (not a sequence of functions) ${ }^{1}$
- Continuity describes how $f(x)$ changes when you change x.
- It says that for each x_{0}, if x is close to x_{0}, then $f(x)$ is close to $f\left(x_{0}\right)$.
- The definition reads: $\forall x_{0} \in X, \forall \epsilon>0, \exists \delta>0$ such that $\forall x \in X$, $d\left(x, x_{0}\right)<\delta$ implies $d\left(f(x), f\left(x_{0}\right)\right)<\epsilon$.

Uniform Continuity

- Uniform continuity is a stronger version of continuity. As before, you are only considering one function f (not a sequence of functions).
- Uniform continuity describes how $f(x)$ changes when you change x.
- If f is uniformly continuous, that means that if x is close to x_{0}, then $f(x)$ is close to $f\left(x_{0}\right)$. Importantly, it requires that how close $f(x)$ and $f\left(x_{0}\right)$ are only depends on how close x and x_{0} are. The same estimate works for all possible values of x and x_{0}.
- The definition reads: $\forall \epsilon>0, \exists \delta>0$ such that $\forall x_{0} \in X, \forall x \in X$, $d\left(x, x_{0}\right)<\delta$ implies $d\left(f(x), f\left(x_{0}\right)\right)<\epsilon$.

[^0]- Note that the only thing that changed relative to the definition of continuity was that " $\forall x_{0}$ " moved later, but this makes all the difference. In the statement of continuity, putting x_{0} first allows the value of δ to depend on both ϵ and x_{0}, but for uniform continuity the value of δ only depends on ϵ. Thus, you can make one choice of δ such that $f(x)$ and $f\left(x_{0}\right)$ will be uniformly close together for all values of x and x_{0} within a distance of δ from each other.

Pointwise Convergence

- To discuss pointwise convergence $f_{n} \rightarrow f$, you need to have a sequence of functions $\left\{f_{n}\right\}$, not just one function.
- Convergence describes how $f_{n}(x)$ changes when you change n (but don't change x).
- $f_{n} \rightarrow f$ pointwise means that for each $x \in X$, if n is large enough, then $f_{n}(x)$ is close to $f(x)$.
- The definition reads: $\forall x \in X, \forall \epsilon>0, \exists N \in \mathbb{N}$ such that $n \geq N$ implies $d\left(f_{n}(x), f(x)\right)<\epsilon$.

Uniform Convergence

- Uniform convergence is a stronger version of convergence. To discuss pointwise convergence $f_{n} \rightarrow f$, you need to have a sequence of functions $\left\{f_{n}\right\}$, not just one function.
- Uniform convergence describes how $f_{n}(x)$ changes when you change n (but don't change x).
- $f_{n} \rightarrow f$ means tha if n is large enough, then $f_{n}(x)$ is close to $f(x)$ uniformly for all values of x.
- The definition reads: $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that $\forall x \in X, n \geq N$ implies $d\left(f_{n}(x), f(x)\right)<\epsilon$.
- Note that the only thing that changed relative to the definition of pointwise convergence was that " $\forall x$ " moved later, but this makes all the difference. In the statement of convergence, putting x first allows the value of N to depend on both ϵ and x, but for uniform converence the value of N only depends on ϵ. Thus, you can make one choice of N such that $f_{n}(x)$ and $f(x)$ will be uniformly close together for all values of x whenever $n \geq N$.

Examples and Theorems

- The following functions $\mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous: $x, \sin x, 1 /(1+$ $\left.x^{2}\right), \arctan x$.
- The following functions $\mathbb{R} \rightarrow \mathbb{R}$ are not uniformly continuous: $x^{2}, \sin x^{2}$, any polynomial of degree at least $2, e^{x}$.
- If f_{n} is continuous for each n and $f_{n} \rightarrow f$ uniformly, then f is continuous.
- If f_{n} is continuous for each n and $f_{n} \rightarrow f$ pointwise, then f might not be continuous. For example, consider $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f_{n}(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
n x, & 0 \leq x \leq 1 / n \\
1, & x \geq 1
\end{array} \quad f(x)= \begin{cases}0, & x \leq 0 \\
1, & x>0\end{cases}\right.
$$

Then $f_{n} \rightarrow f$ pointwise but not uniformly.

- If f_{n} is uniformly continuous and $f_{n} \rightarrow f$ uniformly, then f is uniformly continuous.
- If f_{n} is uniformly continuous and $f_{n} \rightarrow f$ pointwise, then f might not be continuous, or f might be continuous and not uniformly continuous.

[^0]: ${ }^{1}$ Well, maybe you have a sequence $\left\{f_{n}\right\}$ of continuous functions, but in that case, the definition of continuity applies to each function f_{n} independently. It only considers one function at a time.

