Results of Aleksandrov and Peller: Operator Bernstein's Inequality and Modulus of Continuity

David Jekel

October 31, 2016

1 Introduction

This script will explain results from several papers of A.B. Aleksandrov and V.V. Peller. The proofs for $\S 1$ are drawn from [1] and the proofs for $\S 2$ are drawn from [2].

Recall the spectral theorem and functional calculus: If A is a self-adjoint operator on a Hilbert space \mathcal{H}, there is a projection-valued spectral measure E_{A} (Borel measure on \mathbb{R}). Let $\mathcal{B}(\mathbb{R})$ be the space of bounded Borel functions on \mathbb{R} with the sup norm. For $f \in \mathcal{B}(\mathbb{R})$, we can define $f(A)$ by

$$
f(A)=\int_{\mathbb{R}} f(\lambda) d E_{A}(\lambda)
$$

Our goal is to understand how smoothly $f(A)$ depends on A. It's a fact that if $f: \mathbb{R} \rightarrow \mathbb{C}$ is Lipschitz, then it is not necessarily operator Lipschitz, that is,

$$
|f(s)-f(t)| \leq C|s-t| \text { for } s, t \in \mathbb{R}
$$

does NOT imply

$$
\|f(A)-f(B)\| \leq C^{\prime}\|A-B\|
$$

for bounded self-adjoint operators on a Hilbert space. However, we will prove that if $f: \mathbb{R} \rightarrow \mathbb{C}$ is Hölder continuous, then f is operator Hölder continuous, and

$$
\|f(A)-f(B)\| \leq C[f]_{\alpha}\|A-B\|^{\alpha}
$$

where $[f]_{\alpha}$ is the α Hölder seminorm. We will also see what happens to uniformly continuous f with an arbitrary modulus of continuity. Similar questions can be asked about operator derivatives, higher order differences, and so forth.

2 Bernstein's Inequality

Though the authors originally proved these results using tensor product estimates, they later found a shorter proof using Bernstein's inequality from complex analysis. Let \mathcal{E}_{σ} be the class of bounded functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that f
extends to an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ satisfying $|f(z)| \leq C_{\delta} e^{(\sigma+\delta)|z|}$ for any $\delta>0$. Then

Theorem 1 (Bernstein's Inequality). If $f \in \mathcal{E}_{\sigma}$, then

$$
\left\|f^{\prime}\right\|_{L^{\infty}(\mathbb{R})} \leq \sigma\|f\|_{L^{\infty}(\mathbb{R})}
$$

In order to handle $f(A)$ for a self-adjoint operator A, we extend Bernstein's inequality to X-valued functions for a Banach space X. If X is a Banach space, then let $\mathcal{E}_{\sigma}(X)$ be the class of bounded functions $f: \mathbb{R} \rightarrow X$ such that $\phi(f(X)) \in \mathcal{E}_{\sigma}$ for all $\phi \in X^{*}$. Then we have

Theorem 2. If $f \in \mathcal{E}_{\sigma}(X)$, then

$$
\|f(s)-f(t)\|_{X} \leq \sigma|s-t|\|f\|_{L^{\infty}(\mathbb{R}, X)} \text { for } s, t \in \mathbb{R}
$$

We need some lemmas from complex analysis. The next two lemmas are taken from [3, Lecture 6].

Lemma 3 (Phragmen-Lindelöf). Suppose that f is analytic on $D=\left\{r e^{i \theta}: \theta_{0}<\right.$ $\left.\theta<\theta_{0}+\lambda\right\}$ and extends continuously to \bar{D}. If $|f(z)| \leq C e^{c|z|^{\rho}}$ with $\rho<\pi / \lambda$ and $|f(z)| \leq M$ on ∂D, then $|f(z)| \leq M$ on D.
Proof. By rotation, assume that $D=\left\{r e^{i \theta}:-\lambda / 2<\theta<\lambda / 2\right\}$. Let $\rho<\alpha<$ π / λ. Note that the canonical choice of z^{α} maps D analytically onto $\left\{r e^{i \theta}:|\theta|<\right.$ $\alpha \lambda / 2<\pi / 2\}$ and hence $\operatorname{Re} z^{\alpha} \geq \delta|z|^{\alpha}$ for some $\delta>0$. This implies that

$$
\left|f(z) e^{-\epsilon z^{\alpha}}\right| \leq C e^{c|z|^{\rho}-\epsilon \delta|z|^{\alpha}}
$$

which approaches zero as $z \rightarrow \infty$. Since we also have $\left|f(z) e^{-\epsilon z^{\alpha}}\right| \leq|f(z)|$ on ∂D, the maximum principle implies that $\left|f(z) e^{-\epsilon z^{\alpha}}\right| \leq M$. Taking $\epsilon \rightarrow 0$ completes the proof.

Lemma 4. If $f \in \mathcal{E}_{\sigma}$, then $|f(z)| \leq e^{\sigma|\operatorname{im} z|}\|f\|_{L^{\infty}(\mathbb{R})}$.
Proof. Let us prove the inequality for the upper half-plane. The lower half-plane is symmetrical. For $\delta>0$, note that $e^{i(\sigma+\delta) z} f(z)$ is bounded on \mathbb{R} by $\|f\|_{\infty}$. We also have $e^{i(\sigma+\delta) z} f(z) \leq C_{\delta}$ for z on the imaginary axis. We apply PhragmenLindelöf on the two quarter planes $\{0<\theta<\pi / 2\}$ and $\{\pi / 2<\theta<\pi\}$ with $\lambda=\pi / 2, \rho=1$, to conclude that

$$
\left|e^{i(\sigma+\delta) z} f(z)\right| \leq \max \left(\|f\|_{L^{\infty}(\mathbb{R})}, C_{\delta}\right) \text { for } \operatorname{im} z \geq 0
$$

Next, since $e^{i(\sigma+\delta) z} f(z)$ is bounded, we can apply Phragmen-Lindelöf on $\{0<$ $\theta<\pi\}$ with $\lambda=\pi$ and $\rho=0$ to conclude that

$$
\left|e^{i(\sigma+\delta) z} f(z)\right| \leq\|f\|_{L^{\infty}(\mathbb{R})}
$$

Taking $\delta \rightarrow 0$ completes the proof for the upper half-plane.

Lemma 5. Suppose that $f \in L^{\infty}(\mathbb{R})$. We have $f \in \mathcal{E}_{2 \pi \sigma}$ if and only if the Fourier transform $\mathcal{F} f$ is supported in $[-\sigma, \sigma]$.

Proof. Suppose that $\mathcal{F} f$ is supported in $[-\sigma, \sigma]$. From the nature of the Frechet topology on the Schwarz class \mathcal{S} and the duality between continuous functions on $[-\sigma, \sigma]$ with measures, we can deduce that

$$
\mathcal{F} f=\sum_{j=0}^{n}(-1)^{j} \frac{d^{j}}{d t^{j}} \mu_{j}
$$

for some finite complex Borel measures μ_{j} on $[-\sigma, \sigma]$. This implies that

$$
f(z)=\sum_{j=0}^{n} \int_{-\sigma}^{\sigma} \frac{d^{j}}{d t^{j}} e^{2 \pi i z t} d \mu_{j}(t)=\sum_{j=0}^{n}(2 \pi i z)^{j} \int_{-\sigma}^{\sigma} e^{2 \pi i z t} d \mu_{j}(t)
$$

Note that f extends to an entire function using Morera's theorem and $|f(z)| \leq$ $C_{\delta}(1+|z|)^{n} e^{(2 \pi \sigma+\delta)|\operatorname{im} z|}$ for any $\delta>0$, which implies that $f \in \mathcal{E}_{\sigma}$.

Conversely, suppose that $f \in \mathcal{E}_{2 \pi \sigma}$. For $\operatorname{im} z \geq 0$, we have $1-i z$ in the right half-plane, so we can define $\sqrt{1-i z}$ to be holomorphic there with positive real part. Moreover, $\operatorname{Re} \sqrt{1-i z} \geq c|\sqrt{1-i z}| \geq c \sqrt{|z|}$ for $\operatorname{Re} z \geq 0$. For $\epsilon>0$, define

$$
f_{\epsilon}(z)=f(z) e^{-c \epsilon \sqrt{1-i z}} \text { for } \operatorname{Re} z>-1
$$

Note that

$$
\left|f_{\epsilon}(z)\right| \leq|f(z)| e^{-c \epsilon \sqrt{|z|}} \leq\|f\|_{L^{\infty}(\mathbb{R})} e^{-c \epsilon \sqrt{|z|}} e^{\sigma|\mathrm{im} z|}
$$

In particular, $f_{\epsilon} \in L^{1}(\mathbb{R})$. If $t<-\sigma$, then

$$
\mathcal{F} f_{\epsilon}(t)=\int_{\mathbb{R}} f_{\epsilon}(z) e^{-2 \pi i t z} d z
$$

Because the integrand is holomorphic on $\operatorname{im} z>-1$, we have for $R>0$

$$
\int_{-R}^{R} f_{\epsilon}(z) e^{-2 \pi i t z} d z=-\int_{\gamma_{R}} f_{\epsilon}(z) e^{-2 \pi i t z} d z
$$

where γ_{R} is the semi-circular arc from R to $-R$ in the upper half-plane. But

$$
\left|\int_{\gamma_{R}} f_{\epsilon}(z) e^{-2 \pi i t z} d z\right| \leq \int_{\gamma_{R}}\|f\|_{L^{\infty}} e^{-c \epsilon \sqrt{|z|}} e^{2 \pi(-\sigma-t)|\operatorname{im} z|}|d z| \leq\|f\|_{L^{\infty}} \pi R e^{-c \epsilon \sqrt{R}}
$$

Taking $R \rightarrow+\infty$ shows that

$$
\mathcal{F} f_{\epsilon}(t)=\int_{\mathbb{R}} f_{\epsilon}(z) e^{-2 \pi i t z} d z=0 \text { for } t<-\sigma
$$

Therefore, $\mathcal{F} f_{\epsilon}$ is supported in $[-\sigma,+\infty)$. Because $f_{\epsilon} \rightarrow f$ in \mathcal{S}^{\prime}, we have $\mathcal{F} f_{\epsilon} \rightarrow$ $\mathcal{F} f$ in \mathcal{S}^{\prime} and hence $\mathcal{F} f$ is supported in $[-\sigma,+\infty)$. A symmetrical argument shows that $\mathcal{F} f$ vanishes for $t>\sigma$, so that $\mathcal{F} f$ is supported in $[-\sigma, \sigma]$.

Lemma 6. Let $z_{k}=\frac{1}{2}\left(k+\frac{1}{2}\right)$ for $k \in \mathbb{Z}$. Then $g_{k}(z)=\sqrt{2} \cos (2 \pi z) / 2 \pi\left(z-z_{k}\right)$ is an orthonormal basis for $\mathcal{E}_{2 \pi} \cap L^{2}(\mathbb{R})$ in the L^{2} inner product.

Proof. By the last lemma and Plancherel's theorem, the Fourier transform maps $\mathcal{E}_{2 \pi} \cap L^{2}(\mathbb{R})$ isometrically onto $L^{2}([-1,1]) \subset L^{2}(\mathbb{R})$. An orthonormal basis for $L^{2}([-1,1])$ is given by

$$
h_{k}(t)=\frac{1}{\sqrt{2}} \chi_{[-1,1]}(t) e^{-\pi i(k+1 / 2) t}=\frac{1}{\sqrt{2}} \chi_{[-1,1]}(t) e^{-2 \pi i z_{k} t}, \quad k \in \mathbb{Z}
$$

Then

$$
\mathcal{F}^{-1} h_{k}(z)=\frac{1}{\sqrt{2}}\left[\mathcal{F}^{-1} \chi_{[-1,1]}\right]\left(z-z_{k}\right),
$$

and

$$
\mathcal{F}^{-1} \chi_{[-1,1]}(z)=\int_{-1}^{1} e^{2 \pi i z t} d t=\frac{1}{\pi z} \sin 2 \pi z
$$

Hence, since $z_{k}=\frac{1}{2}\left(k+\frac{1}{2}\right)$, we have

$$
\mathcal{F}^{-1} h_{k}(z)=\frac{\sqrt{2} \sin 2 \pi\left(z-z_{k}\right)}{2 \pi\left(z-z_{k}\right)}=\frac{(-1)^{k+1} \sqrt{2} \cos 2 \pi z}{2 \pi\left(z-z_{k}\right)}=(-1)^{k+1} g_{k}(z)
$$

which implies g_{k} is an orthonormal basis for $\mathcal{E}_{2 \pi} \cap L^{2}(\mathbb{R})$.
Lemma 7. If $f \in \mathcal{E}_{2 \pi} \cap L^{2}(\mathbb{R})$ and g_{k} is as above, then

$$
\left\langle f, g_{k}\right\rangle_{L^{2}(\mathbb{R})}=(-1)^{k+1} f(k \pi+\pi / 2)
$$

In particular,

$$
f(z)=\sum_{k \in \mathbb{Z}}(-1)^{k+1} f\left(z_{k}\right) \frac{\cos 2 \pi z}{2 \pi\left(z-z_{k}\right)}
$$

where the sum converges in $L^{2}(\mathbb{R})$.
Proof. Let f_{ϵ} be as in the proof of Lemma 5. For $z \in \mathbb{R}$, let $\gamma_{r}^{+}(z)$ denote the upper semicircle centered at z with radius r, oriented counterclockwise. By the Cauchy integral formula, for $r>0$ and $R>r+\left|z_{k}\right|$,

$$
\int_{[-R, R] \backslash\left(z_{k}-r, z_{k}+r\right)} \frac{f_{\epsilon}(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)} d z=\int_{\gamma_{r}^{+}\left(z_{k}\right)} \frac{f_{\epsilon}(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)} d z-\int_{\gamma_{R}^{+}(0)} \frac{f_{\epsilon}(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)} d z
$$

Note that $\mathcal{F} f \in L^{2}([-1,1])$, hence in $L^{1}([-1,1])$, which implies

$$
|f(z)| \leq\|\mathcal{F} f\|_{L^{1}([-1,1])} e^{2 \pi|\mathrm{im} z|}
$$

and hence $\left|f_{\epsilon}(z)\right| \leq C e^{2 \pi|\operatorname{im} z|} e^{-\epsilon \sqrt{|z|}}$. Thus, the integral over $\gamma_{R}^{+}(0)$ approaches zero as $R \rightarrow+\infty$, which implies

$$
\int_{\mathbb{R} \backslash\left(z_{k}-r, z_{k}+r\right)} \frac{f_{\epsilon}(z) \sqrt{2} e^{2 \pi i z}}{z-z_{k}} d z=\int_{\gamma_{r}^{+}\left(z_{k}\right)} \frac{f_{\epsilon}(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)} d z .
$$

Because $f_{\epsilon} \rightarrow f$ in $L^{2}(\mathbb{R})$ and locally uniformly on $\{\operatorname{im} z \geq 0\}$ as $\epsilon \rightarrow 0$, we have

$$
\int_{\mathbb{R} \backslash\left(z_{k}-r, z_{k}+r\right)} \frac{f(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)} d z=\int_{\gamma_{r}^{+}\left(z_{k}\right)} \frac{f(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)} d z
$$

Observe that on $\left\{\left|z-z_{k}\right|=r\right\}$, we have

$$
\frac{f(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)}=\frac{f\left(z_{k}\right) \sqrt{2} e^{2 \pi i z_{k}}}{2 \pi\left(z-z_{k}\right)}+O(1)=\frac{i(-1)^{k} \sqrt{2} f\left(z_{k}\right)}{2 \pi\left(z-z_{k}\right)}+O(1)
$$

Therefore,

$$
\int_{\mathbb{R} \backslash\left(z_{k}-r, z_{k}+r\right)} \frac{f(z) \sqrt{2} e^{2 \pi i z}}{2 \pi\left(z-z_{k}\right)} d z=\frac{(-1)^{k+1}}{\sqrt{2}} f\left(z_{k}\right)+O(r) .
$$

A symmetrical computation for $e^{-2 \pi i z}$ instead of $e^{2 \pi i z}$ will yield the same answer; averaging the two results,

$$
\int_{\mathbb{R} \backslash\left(z_{k}-r, z_{k}+r\right)} \frac{f(z) \sqrt{2} \cos 2 \pi z}{2 \pi\left(z-z_{k}\right)} d z=\frac{(-1)^{k+1}}{\sqrt{2}} f\left(z_{k}\right)+O(r) .
$$

Taking $r \rightarrow 0$ with dominated convergence yields

$$
\left\langle f, g_{k}\right\rangle=\frac{(-1)^{k+1}}{\sqrt{2}} f\left(z_{k}\right)
$$

Therefore,

$$
f(z)=\sum_{z \in \mathbb{Z}}\left\langle f, g_{k}\right\rangle g_{k}(z)=\sum_{k \in \mathbb{Z}}(-1)^{k+1} f\left(z_{k}\right) \frac{\cos 2 \pi z}{2 \pi\left(z-z_{k}\right)}
$$

Theorem 8 (Bernstein's inequality). Let $f \in \mathcal{E}_{\sigma}$. Then

$$
|f(s)-f(t)| \leq \sigma|s-t|\|f\|_{L^{\infty}(\mathbb{R})}
$$

Proof. By rescaling the domain of f, we can assume that $\sigma=2 \pi$. Next, by translating f, it suffices to show that

$$
|f(z)-f(-z)| \leq 2 \pi \cdot 2|z|\|f\|_{L^{\infty}(\mathbb{R})} \text { for } z \geq 0
$$

Define

$$
F(z)=\frac{f(z)-f(-z)}{2 z}
$$

Since $f \in L^{\infty}(\mathbb{R})$, we have $F \in L^{2}(\mathbb{R})$, and clearly $F \in \mathcal{E}_{2 \pi}$. Thus, by the previous lemma,

$$
F(z)=\sum_{k \in \mathbb{Z}}(-1)^{k+1} F\left(z_{k}\right) \frac{\cos 2 \pi z}{2 \pi\left(z-z_{k}\right)}=\sum_{k \in \mathbb{Z}}(-1)^{k+1} \frac{f\left(z_{k}\right)-f\left(-z_{k}\right)}{2 z_{k}} \frac{\cos 2 \pi z}{2 \pi\left(z-z_{k}\right)}
$$

Hence, for $z \in[0,1 / 4]$, noting that $z_{k}\left(z-z_{k}\right)<0$, we have

$$
\begin{aligned}
|F(z)| & \leq\|f\|_{L^{\infty}(\mathbb{R})} \sum_{k \in \mathbb{Z}} \frac{-1}{z_{k}} \frac{\cos 2 \pi z}{2 \pi\left(z-z_{k}\right)} \\
& \leq\|f\|_{L^{\infty}(\mathbb{R})} \sum_{k \in \mathbb{Z}}(-1)^{k+1} \frac{\sin \left(2 \pi z_{k}\right)-\sin \left(-2 \pi z_{k}\right)}{2 z_{k}} \frac{\cos 2 \pi z}{2 \pi\left(z-z_{k}\right)} \\
& \leq\|f\|_{L^{\infty}(\mathbb{R})} \frac{\sin (2 \pi z)-\sin (-2 \pi z)}{2 z} \leq\|f\|_{L^{\infty}(\mathbb{R})} \cdot 2 \pi
\end{aligned}
$$

where the last line follows from applying the preceding identity with $f(z)=$ $\sin 2 \pi z$. This complete the proof for $z \in[0,1 / 4]$. On the other hand, for $z>1 / 4$,

$$
|F(z)| \leq \frac{\|f\|_{L^{\infty}(\mathbb{R})}}{|z|} \leq 4\|f\|_{L^{\infty}(\mathbb{R})} \leq 2 \pi\|f\|_{L^{\infty}(\mathbb{R})}
$$

which is what we wanted to prove.
Corollary 9. If X is a Banach space and $f \in \mathcal{E}_{\sigma}(X)$, then

$$
\|f(s)-f(t)\|_{X} \leq \sigma|s-t|\|f\|_{L^{\infty}(\mathbb{R}, X)} \text { for } s, t \in \mathbb{R}
$$

Proof. Let (x, ϕ) denote the bilinear pairing between $x \in X$ and $\phi \in X^{*}$. For any $\phi \in X^{*}$, we know that $(f(t), \phi) \in \mathcal{E}_{\sigma}$. Therefore, by the previous theorem,

$$
|(f(s)-f(t), \phi)| \leq \sigma|s-t|\|(f(\cdot), \phi)\|_{L^{\infty}(\mathbb{R})} \leq \sigma|s-t|\|f\|_{L^{\infty}(\mathbb{R}, X)}
$$

Taking the supremum over ϕ on the left-hand side completes the proof.
Theorem 10. Let $f \in \mathcal{E}_{\sigma}$, and let A and B be bounded self-adjoint operators on a Hilbert space H. Then

$$
\|f(A)-f(B)\| \leq \sigma\|A-B\|\|f\|_{L^{\infty}(\mathbb{R})}
$$

Proof. Define $g: \mathbb{R} \rightarrow \mathcal{L}(H)$ by $g(z)=f(A+z(B-A))$. We claim that $g \in \mathcal{E}_{\sigma}(L(H))$. By the spectral mapping theorem $\|f(A+z(B-A))\| \leq\|f\|_{L^{\infty}(\mathbb{R})}$ for $z \in \mathbb{R}$, so g is bounded on the real line. To check the exponential growth we use power series. Note that by iterative application of Bernstein's inequality,

$$
\left\|f^{(k)}\right\|_{L^{\infty}(\mathbb{R})} \leq \sigma^{k}\|f\|_{L^{\infty}}
$$

In particular,

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^{k} \text { with }\left|f^{(k)}(0)\right| \leq \sigma^{k}\|f\|_{L^{\infty}(\mathbb{R})}
$$

Substituting $A+z(B-A)$ for z yields,

$$
\begin{aligned}
\|f(A+z(B-A))\| & \leq\|f\|_{L^{\infty}} \sum_{k=0}^{\infty} \frac{\sigma^{k}}{k!}\|A+z(B-A)\|^{k} \\
& \leq\|f\|_{L^{\infty}} e^{\sigma\|A+z(B-A)\|} \\
& \leq\|f\|_{L^{\infty}} e^{\sigma\|A\|} e^{\sigma z\|B-A\|} .
\end{aligned}
$$

This implies $g \in \mathcal{E}_{\sigma\|A-B\|}(\mathcal{L}(H))$. Therefore, by the previous result,

$$
\|f(A)-f(B)\|=\|g(0)-g(1)\| \leq \sigma\|A-B\|\|g\|_{L^{\infty}(\mathbb{R}, \mathcal{L}(H))}=\sigma\|A-B\|\|f\|_{L^{\infty}(\mathbb{R})}
$$

Remark. It is in fact true even if A and B are unbounded, so long as $A-B$ is bounded. See [1, Theorem 5.4].

3 Operator Moduli of Continuity

A modulus of a continuity is a function $\omega:[0,+\infty) \rightarrow[0,+\infty)$ such that

- $\omega(0)=0$,
- $\omega(x)>0$ for $x>0$,
- ω is increasing,
- ω is continuous,
- $\omega(x+y) \leq \omega(x)+\omega(y)$.

For $f: \mathbb{R} \rightarrow \mathbb{C}$, we define

$$
\|f\|_{\Lambda_{\omega}}=\sup _{x \neq y} \frac{|f(x)-f(y)|}{\omega(|x-y|)}
$$

and denote by $\Lambda_{\omega}=\Lambda_{\omega}(\mathbb{R})$ the space of f for which this seminorm is finite.
For any modulus of continuity ω, there is another modulus of continuity ω_{*} given by $\omega_{*}(0)=0$ and

$$
\omega_{*}(x)=x \int_{x}^{\infty} \frac{\omega(t)}{t^{2}} d t \text { for } x>0
$$

assuming the integral is finite for some x. Our goal is to prove
Theorem 11. If $f \in \Lambda_{\omega}(\mathbb{R})$, and if A and B are bounded self-adjoint operators on a Hilbert space, then

$$
\|f(A)-f(B)\| \leq C \omega_{*}(\|A-B\|)\|f\|_{\Lambda_{\omega}}
$$

where C is a universal constant.
Example. If $\omega(x)=x^{\alpha}$ for some $\alpha \in(0,1)$, then $\omega_{*}(x)=(1-\alpha)^{-1} x^{\alpha}$. Thus, any Hölder continuous function on \mathbb{R} is also operator Hölder continuous. If $\omega(x)=\min (x, c)$, then $\omega_{*}(x)=x(1 / c+\log c-\log x)$ for $x<c$.

Lemma 12. If ω is a modulus of continuity and ω_{*} is finite, then ω_{*} is a modulus of continuity.

Proof. Note that

$$
\omega_{*}(x)=\int_{1}^{\infty} \frac{\omega(s x)}{s^{2}} d s
$$

and it follows that ω_{*} is increasing and subadditive. It is clear that if $x>0$, then $\omega_{*}(x)>0$. Moreover, continuity is clear away from 0 , so it remains to show that $\omega_{*}(x) \rightarrow 0$ as $x \rightarrow 0$. If $\int_{0}^{\infty} \omega(x) / x^{2} d x<\infty$, then this would be trivial. If $\int_{0}^{\infty} \omega(x) / x^{2} d x=+\infty$, then using L'Hopital's rule,

$$
\lim _{x \rightarrow 0^{+}} \frac{\int_{x}^{\infty} \omega(y) / y^{2} d y}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{-\omega(x) / x^{2}}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}} \omega(x)=0
$$

Our strategy for proving Theorem 11 will be to perform dyadic decomposition on $\mathcal{F} f$. Using standard bump function constructions, we can create a $w \in C_{c}^{\infty}(\mathbb{R},[0,1])$ supported in $[1 / 2,2]$ such that

$$
w(x)=1-w(x / 2) \text { for } x \in[1,2] .
$$

We observe that

$$
\sum_{n \in \mathbb{Z}} w\left(x / 2^{n}\right)+w\left(-x / 2^{n}\right)=1 \text { for } x \neq 0
$$

and so we aim to write

$$
f=\sum_{n \in \mathbb{Z}} \mathcal{F}^{-1}\left(\mathcal{F} f \cdot w\left(x / 2^{n}\right)\right)+\sum_{n \in \mathbb{Z}} \mathcal{F}^{-1}\left(\mathcal{F} f \cdot w\left(-x / 2^{n}\right)\right)
$$

(Technically, this is only true up to a term with Fourier transform supported at 0 , i.e. a polynomial.) Then because $\mathcal{F} f \cdot w\left(x / 2^{n}\right)$ is supported in in $\left[-2^{n}, 2^{n}\right]$, we can apply the operator Bernstein's inequality to $\mathcal{F}^{-1}\left(\mathcal{F} f \cdot w\left(x / 2^{n}\right)\right)$, and the same with $w\left(x / 2^{n}\right)$ replaced by $w\left(-x / 2^{n}\right)$.

We introduce the following notation: We define $v \in C_{c}^{\infty}(\mathbb{R})$ by

$$
v(x)= \begin{cases}1, & |x| \leq 1 \\ w(|x|), & |x| \geq 1\end{cases}
$$

and define

$$
\begin{aligned}
W_{n}^{+} & =\mathcal{F}^{-1}\left[w\left(x / 2^{n}\right)\right] \\
W_{n}^{-} & =\mathcal{F}^{-1}\left[w\left(-x / 2^{n}\right)\right] \\
V_{n} & =\mathcal{F}^{-1}\left[v\left(x / 2^{n}\right)\right]
\end{aligned}
$$

Then in \mathcal{S}^{\prime}, we have

$$
\mathcal{F} V_{N}+\sum_{n<N}\left(\mathcal{F} W_{n}^{+}+\mathcal{F} W_{n}^{-}\right)=1
$$

so heuristically at least

$$
f=V_{N} * f+\sum_{n<N}\left(W_{n}^{+} * f+W_{n}^{-} * f\right)
$$

Now let us give the details of the argument.

Lemma 13. There is a universal constant $C>0$ such that

$$
\begin{aligned}
\left\|f-V_{n} * f\right\|_{L^{\infty}(\mathbb{R})} & \leq C \omega\left(2^{-n}\right)\|f\|_{\Lambda_{\omega}(\mathbb{R})} \\
\left\|W_{n}^{+} * f\right\|_{L^{\infty}(\mathbb{R})} & \leq C \omega\left(2^{-n}\right)\|f\|_{\Lambda_{\omega}(\mathbb{R})} \\
\left\|W_{n}^{-} * f\right\|_{L^{\infty}(\mathbb{R})} & \leq C \omega\left(2^{-n}\right)\|f\|_{\Lambda_{\omega}(\mathbb{R})}
\end{aligned}
$$

Proof. Note that if $f \in \Lambda_{\omega}(\mathbb{R})$, then subaddivity of ω implies that $|\omega(x)| \leq B|x|$ for some constant B and hence $|f(x)| \leq A+B|x|$ for some constants A and B. Since V_{n} is a Schwarz function, we can express $f * V_{n}$ using Lebesgue integration. Moreover, since $\int V_{n}=v(0)=1$, we have

$$
\begin{aligned}
\left|f(x)-V_{n} * f(x)\right| & =\left|\int_{\mathbb{R}}[f(x)-f(x-y)] V_{n}(y) d y\right| \\
& =\left|2^{n} \int_{\mathbb{R}}[f(x)-f(x-y)] V_{0}\left(2^{n} y\right) d y\right| \\
& \leq\|f\|_{\Lambda_{\omega}} \int_{\mathbb{R}} 2^{n} \omega(|y|)\left|V_{0}\left(2^{n} y\right)\right| d y
\end{aligned}
$$

Break the integral into three regions $\left(-\infty,-2^{-n}\right),\left[2^{-n}, 2^{-n}\right]$, and $\left(2^{-n},+\infty\right)$, and then combine the two outer terms:

$$
\left|f(x)-V_{n} * f(x)\right| \leq\|f\|_{\Lambda_{\omega}}\left(2^{n} \int_{-2^{-n}}^{2^{-n}} \omega(|y|)\left|V_{0}\left(2^{n} y\right)\right| d y+2^{n+1} \int_{2^{-n}}^{+\infty} \omega(|y|)\left|V_{0}\left(2^{n} y\right)\right| d y\right)
$$

The first integral can clearly be estimated by $\omega\left(2^{-n}\right)\left\|V_{0}\right\|_{L^{1}(\mathbb{R})}$. For the second term, we observe that since $y \geq 2^{-n}$ and choose $k \geq-n$ such that $2^{k} \leq y<$ 2^{k+1}, so that

$$
\omega(y) \leq \omega\left(2^{k+1}\right)=\omega\left(2^{n+k+1} \cdot 2^{-n}\right) \leq 2^{n+k+1} \omega\left(2^{-n}\right) \leq 2^{n+1} y \omega\left(2^{-n}\right)
$$

Therefore,

$$
\begin{aligned}
2^{n+1} \int_{2^{-n}}^{+\infty} \omega(y)\left|V_{0}\left(2^{n} y\right)\right| d y & \leq 4 \int_{2^{-n}}^{\infty} \omega\left(2^{-n}\right) 2^{n} y\left|V_{0}\left(2^{n} y\right)\right| 2^{n} d y \\
& \leq 4 \omega\left(2^{-n}\right) \int_{1}^{\infty} y\left|V_{0}(y)\right| d y \leq C \omega\left(2^{-n}\right)
\end{aligned}
$$

This implies $\left|f(x)-V_{n} * f(x)\right| \leq C\|f\|_{\Lambda_{\omega}} \omega\left(2^{-n}\right)$. To prove the estimates for $W_{n}^{ \pm}$, note that $\int W_{n}^{ \pm}=0$ since the Fourier transform vanishes at the origin, and hence

$$
f * W_{n}^{ \pm}(x)=\int_{\mathbb{R}}[f(x)-f(x-y)] W_{n}^{ \pm}(y) d y
$$

and therefore we can use the same argument as for V_{n}.

Proof of Theorem 11. Let A and B be bounded self-adjoint operators, $f \in \Lambda_{\omega}$. Since A and B are bounded, we can modify f for large x to make f bounded, without increasing $\|f\|_{\Lambda_{\omega}}$. Note that for $M<N$, we have

$$
f(A)=\left(f-f * V_{N}\right)(A)+\sum_{n=M+1}^{N} f_{n}(A)+f * V_{M}(A)
$$

where $f_{n}=f * W_{n}^{+}+f * W_{n}^{-}$. Of course, the same holds for B, hence,
$\|f(A)-f(B)\| \leq 2\left\|f-f * V_{N}\right\|_{L^{\infty}(\mathbb{R})}+\sum_{n=M+1}^{N}\left\|f_{n}(A)-f_{n}(B)\right\|+\left\|f * V_{M}(A)-f * V_{M}(B)\right\|$.
Now $f * V_{M}$ has Fourier transform supported in $\left[-2^{M+1}, 2^{M+1}\right]$, so by the operator Bernstein's inequality,

$$
\begin{aligned}
\left\|f * V_{M}(A)-f * V_{M}(B)\right\| & \leq 2^{M+1}\left\|f * V_{M}\right\|_{L^{\infty}(\mathbb{R})}\|A-B\| \\
& \leq 2^{M+1}\|f\|_{L^{\infty}(\mathbb{R})}\left\|V_{0}\right\|_{L^{1}(\mathbb{R})}\|A-B\| \\
& \rightarrow 0 \text { as } M \rightarrow-\infty
\end{aligned}
$$

Thus, taking $M \rightarrow-\infty$ in the above inequality, we have

$$
\|f(A)-f(B)\| \leq 2\left\|f-f * V_{N}\right\|_{L^{\infty}(\mathbb{R})}+\sum_{n=-\infty}^{N}\left\|f_{n}(A)-f_{n}(B)\right\|
$$

Choose N so that $2^{-N} \leq\|A-B\|<2^{-N+1}$, and observe that

$$
2\left\|f-f * V_{N}\right\|_{L^{\infty}(\mathbb{R})} \leq C \omega\left(2^{-N}\right)\|f\|_{\Lambda_{\omega}} \leq C \omega_{*}(\|A-B\|)\|f\|_{\Lambda_{\omega}} .
$$

For the other terms, apply the operator Bernstein inequality to f_{n} to conclude that

$$
\begin{aligned}
\sum_{n=-\infty}^{N}\left\|f_{n}(A)-f_{n}(B)\right\| & \leq \sum_{n=-\infty}^{N} 2^{n+1}\|A-B\|\left\|f_{n}\right\|_{L^{\infty}(\mathbb{R})} \\
& \leq C \sum_{n=-\infty}^{N} 2^{n+1}\|A-B\| \omega\left(2^{-n}\right)\|f\|_{\Lambda_{\omega}} \\
& \leq C\left(\sum_{k=0}^{\infty} \frac{\omega\left(2^{-N+k}\right)}{2^{-N+k}}\right)\|A-B\|\|f\|_{\Lambda_{\omega}} \\
& \leq C\left(\sum_{k=0}^{\infty} \int_{2^{-N+k}}^{2^{-N+k+1}} \frac{2 \omega(t)}{t^{2}} d t\right) 2^{-N+1}\|f\|_{\Lambda_{\omega}} \\
& \leq C \cdot 4 \cdot 2^{-N} \int_{2^{-N}}^{\infty} \frac{\omega(t)}{t^{2}} d t \cdot\|f\|_{\Lambda_{\omega}} \\
& \leq 4 C \omega_{*}\left(2^{-N}\right)\|f\|_{\Lambda_{\omega}} \leq 4 C \omega_{*}(\|A-B\|)\|f\|_{\Lambda_{\omega}}
\end{aligned}
$$

Hence, $\|f(A)-f(B)\| \leq 5 C \omega_{*}(\|A-B\|)\|f\|_{\Lambda_{\omega}}$ as desired.

References

[1] A.B. Aleksandrov and V.V. Peller. "Functions of Perturbed Unbounded Self-Adjoint Operators. Operator Bernstein Type Inequalities."
[2] A. B. Aleksandrov and V.V. Peller. "Operator Hölder-Zygmund Functions."
[3] B. Ya Levin. Lectures on Entire Functions.

