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1 Introduction

This script will explain results from several papers of A.B. Aleksandrov and
V.V. Peller. The proofs for §1 are drawn from [1] and the proofs for §2 are
drawn from [2].

Recall the spectral theorem and functional calculus: If A is a self-adjoint
operator on a Hilbert space H, there is a projection-valued spectral measure
E 4 (Borel measure on R). Let B(R) be the space of bounded Borel functions
on R with the sup norm. For f € B(R), we can define f(A) by

f(4) = / FO)dEA(N).

Our goal is to understand how smoothly f(A) depends on A. It’s a fact that
if f:R — C is Lipschitz, then it is not necessarily operator Lipschitz, that is,

If(s)— f(t)| < C|s—t| for s,t € R

does NOT imply
1£(A) = f(B)Il < C'|A - B

for bounded self-adjoint operators on a Hilbert space. However, we will prove
that if f : R — C is Holder continuous, then f is operator Holder continuous,
and

1£(4) = f(B)| < ClflallA - BI%,

where [f], is the a Holder seminorm. We will also see what happens to uniformly
continuous f with an arbitrary modulus of continuity. Similar questions can be
asked about operator derivatives, higher order differences, and so forth.

2 Bernstein’s Inequality

Though the authors originally proved these results using tensor product esti-
mates, they later found a shorter proof using Bernstein’s inequality from com-
plex analysis. Let £, be the class of bounded functions f : R — C such that f



extends to an entire function f : C — C satisfying | f(2)| < Csel@t9I2l for any
6 > 0. Then

Theorem 1 (Bernstein’s Inequality). If f € &,, then
Hf/HLOC(]R) < U||f||Loo(R)'

In order to handle f(A) for a self-adjoint operator A, we extend Bernstein’s
inequality to X-valued functions for a Banach space X. If X is a Banach
space, then let £,(X) be the class of bounded functions f : R — X such that
d(f(X)) € & for all ¢ € X*. Then we have

Theorem 2. If f € £,(X), then

1£(s) = FDllx < als = | fl| oo g, x) for s, €R.

We need some lemmas from complex analysis. The next two lemmas are
taken from [3, Lecture 6].

Lemma 3 (Phragmen-Lindeldf). Suppose that f is analytic on D = {ret : 0y <
0 < 0y + \} and extends continuously to D. If |f(2)] < Ce*” with p < /)
and |f(2)| < M on ID, then |f(z)] <M on D.

Proof. By rotation, assume that D = {re? : —\/2 < § < \/2}. Let p < a <
7/A. Note that the canonical choice of 2% maps D analytically onto {re® : || <
aX/2 < w/2} and hence Re z* > §|z|* for some § > 0. This implies that

F(2)e™"] < Ol —eal=1”,

which approaches zero as z — co. Since we also have |f(z)e=*"| < |f(2)]
on OD, the maximum principle implies that |f(z)e=¢*"| < M. Taking € — 0
completes the proof. O

Lemma 4. If f € &,, then |f(z)| < e"'imz|||f||LcC(R).

Proof. Let us prove the inequality for the upper half-plane. The lower half-plane
is symmetrical. For § > 0, note that e!(?+9? f(2) is bounded on R by || f|| .. We
also have e*(?+9)% f(2) < Cj for z on the imaginary axis. We apply Phragmen-
Lindel6f on the two quarter planes {0 < 6 < 7/2} and {7n/2 < 6 < 7} with
A=m/2, p=1, to conclude that

|ei(z7+5)zf(z)‘ < maX(||f||Loo(R)7 Cs) for imz > 0.

Next, since ei("““s)zf(z) is bounded, we can apply Phragmen-Lindelof on {0 <
6 <} with A = 7 and p = 0 to conclude that

e ()] < 1l e )

Taking § — 0 completes the proof for the upper half-plane. O



Lemma 5. Suppose that f € L*°(R). We have f € Eypy if and only if the
Fourier transform Ff is supported in [—o,0].

Proof. Suppose that Ff is supported in [—o, o]. From the nature of the Frechet
topology on the Schwarz class S and the duality between continuous functions
on [—o, o] with measures, we can deduce that

7i= Z Pt

for some finite complex Borel measures p1; on [—o, o]. This implies that

n

Z dt] 27mzt du]( ) 2(27”2)]/ eQm’zt d,uj(t).

j=0 -7

Note that f extends to an entire function using Morera’s theorem and |f(2)| <
Cs(1 + |z])re@rotalim=l for any § > 0, which implies that f € &,.

Conversely, suppose that f € Ea,. For imz > 0, we have 1 — iz in the right
half-plane, so we can define /1 — iz to be holomorphic there with positive real

part. Moreover, Rev/1 —iz > ¢|\/1 —iz| > ¢y/|z| for Rez > 0. For € > 0,
define ‘
fo(2) = f(2)e V17 for Rez > —1.

Note that

e < 1F e VI <] oo eV el 21,

In particular, f. € L'(R). If t < —o, then

Ffe / fe —27r1tz dz.

Because the integrand is holomorphic on im z > —1, we have for R > 0

R
/ fE(Z)672m’tz dz = — fe(z)ef%ritz dZ,
-R TR

where g is the semi-circular arc from R to —R in the upper half-plane. But

f€<z>e‘2’”“d2‘s 1f | eVl 2mo=tlim =l gz < | 7|, wRemeVE

TR TR

Taking R — +oo shows that
Ffe(t) / fe(2)e ™™ dz = 0 for t < —o.
Therefore, F f. is supported in [—0, +00). Because f. — f in S§’, we have F f. —

Ff in & and hence Ff is supported in [—o,+00). A symmetrical argument
shows that F f vanishes for ¢t > o, so that Ff is supported in [—o, o]. O



Lemma 6. Let z, = 3(k+ 1) for k € Z. Then gi(z) = v2cos(272)/2m(z — z)
is an orthonormal basis for Eor N L2(R) in the L? inner product.

Proof. By the last lemma and Plancherel’s theorem, the Fourier transform maps
Ear N L2(R) isometrically onto L?([—1,1]) € L*(R). An orthonormal basis for
L?([-1,1]) is given by

1 — i 1 —2miz
hi(t) = EX[AJ] (tye ™LA = EX[AJ] (t)e 2™t k€ L.
Then i
F hi(z) = —=[F 1y Z— 2k),
k(2) \/5[ X1,z = 2k)
and

1
; 1
F ' (z) = / 2™t = — sin 27z,

1 4

: 1 1
Hence, since z = 5(k + 5), we have

sin27(z — —1)**+1/2 cos 27z
Fln(z) = ﬁQﬂ'(i —( 2k) - - 1)271'(2'\/—5%)2 = (D" ae),

which implies g is an orthonormal basis for o, N L2(R). O

Lemma 7. If f € £, N L3(R) and gy, is as above, then

(fo90) L2y = (FD)" (ke +7/2).

In particular,
cos 2Tz

Fz) =Y (=1 f(z)

= 2m(z — zx)’
where the sum converges in L?(R).

Proof. Let f. be as in the proof of Lemma 5. For z € R, let ;7 (2) denote the
upper semicircle centered at z with radius r, oriented counterclockwise. By the
Cauchy integral formula, for r > 0 and R > r + |2/,

/ fe(z)\/ie%riz b — / fe(z)\/ie%riz dz_/ fe(z)ﬁe2ﬂiz &
[ R,B\(zh—rzntr) 27(2 — 2k) Y (=) 2m(z — 2k) vi©) 2m(z—zk)
Note that Ff € L?([-1,1]), hence in L'([—1,1]), which implies

lf(2)] < ||]:f||L1([_171])€27T|imz|7

and hence |f.(z)| < Ce?7 im 2| g—ey/I2], Thus, the integral over v (0) approaches
zero as R — 400, which implies

2miz 2miz
/ fe(z)v2e?m= / fe(2) V22
R\ (zk—r,zK+T) ’y+ (zk)

z — 25 27(z — z1)



Because f. — f in L?(R) and locally uniformly on {im z > 0} as ¢ — 0, we have
2 2miz 2 2miz
[ LRy LN
R\(sr—r,ztr) 27(2 — 2k) 7 () 2m(2 = 2k)

Observe that on {|z — zx| = r}, we have

f()V2e= f(ar) V22T _ (=D V2f ()

o) " - POV Taoay TOW
Therefore,
f(z)V2e¥mi=  (—1)kHL
/R\(zk—r,zk_H«) 27(z — z1) dz = /2 flzr) +O(r).

—2miz 2miz

A symmetrical computation for e instead of e

swer; averaging the two results,

f(2)V2cos2mz  (—1)kH!
‘/R\(Zk—T,Zk-i-r) 27 (z — z1) dz = NG f(zx) +O(r).

Taking r» — 0 with dominated convergence yields

will yield the same an-

(71 k+1
(frgr) = Tf(zk)-
Therefore,
cos2mz

F(2) =Y {fradon(z) = Y (=D ()

oz~ 20)

Theorem 8 (Bernstein’s inequality). Let f € &,. Then

[f(s) = F@O| < als = I 1] oo gy -

Proof. By rescaling the domain of f, we can assume that ¢ = 27. Next, by
translating f, it suffices to show that

F(2) = F(=2)] < 27 - 20201 | g gy for 2 2 0.
Define

Since f € L*°(R), we have F € L?(R), and clearly F' € &,. Thus, by the
previous lemma,

F(z) = Z(—l)k'HF(zk)%ﬂz) - Z(_l)k—H f(zx) — f(=2x) cos2mz

= 27(z — zp = 22y 2m(z — zi)



Hence, for z € [0, 1/4], noting that z;(z — z;) < 0, we have

cos2mz

|F(z |<||f\|Lm<R>ZZ 57 )

kHsm (2mzy) — sin(—27zE) cos2mz
<oy D_(-1 7 e 70)

keZ
sin(27z) — sin(—272)
<l =

where the last line follows from applying the preceding identity with f(z) =
sin27z. This complete the proof for z € [0,1/4]. On the other hand, for

z>1/4,
F()| < ||f||L°|°

which is what we wanted to prove. U

<l poe gy - 27,

R
B <4 fll ey < 27U F ooy

Corollary 9. If X is a Banach space and [ € £,(X), then
1£(s) = FD)llx < ols =t fll Lo @,x) fors,t €R.

Proof. Let (x,¢) denote the bilinear pairing between x € X and ¢ € X*. For
any ¢ € X*, we know that (f(t),¢) € &,. Therefore, by the previous theorem,

[(F(s) = f(1), )| < als =t (F () D) Lo ) < 015 = I Fll Lo m, x)-

Taking the supremum over ¢ on the left-hand side completes the proof. O

Theorem 10. Let f € &,, and let A and B be bounded self-adjoint operators
on a Hilbert space H. Then
1£(A) = f(B)Il < ollA = BllIf [l < r)-

Proof. Define g : R — L(H) by g(z) = f(A+ 2(B — A)). We claim that
g € E;(L(H)). By the spectral mapping theorem || f(A+z(B—A))|| < [[f[l 1w
for z € R, so g is bounded on the real line. To check the exponential growth we
use power series. Note that by iterative application of Bernstein’s inequality,

P ey < " 11 -

In particular,

> (k)
7o) = 3 0k it |190)] < 4 oy

Substituting A + z(B — A) for z yields,
oo

k
ag .
54+ 2(B = AN < 7l D T lA+ (B - A))*
k=0
< ||f||Loo€U”A+z(B_A)”

< ||f||LoerHAH€GZIIB—AH_



This implies g € ;) a—p|(L(H)). Therefore, by the previous result,

1F(A) = F(B)|| = [lg(0) =gVl < ol A= Bllllgll Lo &, 21y = oNA= Bl Fll oo (-
O

Remark. 1t is in fact true even if A and B are unbounded, so long as A — B is
bounded. See [1, Theorem 5.4].

3 Operator Moduli of Continuity

A modulus of a continuity is a function w : [0, 4+00) — [0, +00) such that
e w(0)=0,
o w(z) >0 forz >0,
e w is increasing,
e w is continuous,
e w(@+y) <w(x) +wy)
For f: R — C, we define

@)~ fW)

and denote by A, = A, (R) the space of f for which this seminorm is finite.
For any modulus of continuity w, there is another modulus of continuity w,
given by w,(0) = 0 and

< w(t
w*(x)::c/ w()dtforx>0,

t2
assuming the integral is finite for some z. Our goal is to prove

Theorem 11. If f € A,(R), and if A and B are bounded self-adjoint operators
on a Hilbert space, then

1£(A) = F(B)Il < Cwn(l[A = BIDIfla,

where C 1s a universal constant.

Example. If w(z) = 2 for some a € (0,1), then w(z) = (1 — o)~ tz®. Thus,
any Holder continuous function on R is also operator Hélder continuous. If
w(z) = min(x, ¢), then w,(z) = x(1/c +logec — logx) for x < c.

Lemma 12. If w is a modulus of continuity and w, is finite, then w, is a
modulus of continuity.



Proof. Note that

o) = [ 5 as

52
and it follows that w, is increasing and subadditive. It is clear that if x > 0,
then w,(z) > 0. Moreover, continuity is clear away from 0, so it remains to
show that w.(z) — 0 as @ — 0. If [[“w(x)/2? dz < oo, then this would be
trivial. If [~ w(z)/2* dz = 400, then using L'Hopital’s rule,
e /dy L —w(z)/a?
lim *+———— = lim ————— =
z—0+ 1/x a—0+  —1/x2 T—0+
Our strategy for proving Theorem 11 will be to perform dyadic decompo-
sition on Ff. Using standard bump function constructions, we can create a
w € C(R,[0,1]) supported in [1/2,2] such that
w(z) =1—w(x/2) for z € [1,2].
We observe that
Zw(x/?”) +w(—z/2") =1 for x # 0,
nez
and so we aim to write
f=2 FHNFfw@/2m) + 3 F U Ff - w(=w/2").
neZ nez

(Technically, this is only true up to a term with Fourier transform supported at
0, i.e. a polynomial.) Then because Ff - w(z/2") is supported in in [—27,2"],
we can apply the operator Bernstein’s inequality to F~1(F f-w(x/2")), and the
same with w(z/2™) replaced by w(—x/2").

We introduce the following notation: We define v € C°(R) by

o(a) = {1, ol <1,

w(lal), |2/ >1."

and define
Wi = F (/2"
W, = F Hw(—z/2")]
Vo =F Ho(z/2")]

Then in §’, we have

FVn+ Y (FW, + FW,) =1,
n<N

so heuristically at least
F=Vasf+ Y (Wi f+W, [)
n<N

Now let us give the details of the argument.



Lemma 13. There is a universal constant C > 0 such that

1f = Vot fll ooy < Cw7)flla, (w)

W, fll ooy < Cw(@)Iflla, )

W fll oo gy < Cw)Illa, -
Proof. Note that if f € A, (R), then subaddivity of w implies that |w(z)| < B|x|
for some constant B and hence |f(x)] < A + B|xz| for some constants A and B.

Since V,, is a Schwarz function, we can express f*V,, using Lebesgue integration.
Moreover, since [ V,, = v(0) = 1, we have

[f(@) = Vs f(2)] =

@) = s = 1vato) dy]

2 [ @) - fa =9Iy dy\
R
< Ifll / 2wy Vo (2")] dy.

Break the integral into three regions (—oo, —27"), [27",27"], and (27", 4+00),
and then combine the two outer terms:

—-n

2" +oo
7@ ~Vaor F@)] < L, (2" [ etublaerniay+2 [ W(|y|)|V0(2ny)dy> .

The first integral can clearly be estimated by w(27")[|Vol| 1 (). For the second

term, we observe that since y > 27" and choose k > —n such that 2 < y <
2k+1 5o that

w(y) < o‘)(2k+1) _ w(2n+k+1 . 2—n) < 2n+k+1w(2—n) < 2n+1yw(2—n).

Therefore,

o0

+oo
g1 / () [Vo(2"y)| dy < 4 / w22y Vo (2"y) | 2" dy

—n 2—n

<40z [ olValw)ldy < Cufz™)

This implies |f(z) — V,, * f(z)| < C|f|l,_ w(27"). To prove the estimates for
W+ note that J W+ = 0 since the Fourier transform vanishes at the origin,

and hence

feWE() = / (@) — flx — ) IWE(y) dy,

R
and therefore we can use the same argument as for V,,. O



Proof of Theorem 11. Let A and B be bounded self-adjoint operators, f € A,,.
Since A and B are bounded, we can modify f for large = to make f bounded,
without increasing || f||, . Note that for M < N, we have

N
FA) = (f = F*Vn)A) + D falA) + fx Var(A),

n=M+1

where f, = f* W, + f* W, . Of course, the same holds for B, hence,

N
IF (A= F B < 2=Vl pmyt D (A= Fa(B)IHIF5Var (A) = fVar (B)]]-

n=M+1

Now f * Vs has Fourier transform supported in [-2M+1 2M+1] 5o by the op-
erator Bernstein’s inequality,

1f * Var(A) = £ Var(B)| < 2YFH £ % Vi || oo gy 1A — B
< 2MHU| £ ooy 1Vl 1.y 1A — Bl
—0as M — —oo.

Thus, taking M — —oo in the above inequality, we have

N
1F(A) = FB) < 20f = f* Vil + D IfalA) = fu(B).

n=-—oo

Choose N so that 27V < ||A — B|| < 2=¥*! and observe that

2| = f* Villpoom) < Cw@M)If s, < Cws(lA = BIDIfl, -

For the other terms, apply the operator Bernstein inequality to f, to conclude
that

N N
Do ) = B < Y0 2A = Bl fall g my

n=—oo n=—oo

N
<C Y 2" A= Blw@ ),

n=—oo

> w(2 Ntk
<c <Z W) 1A= BIIfll,.
k=0
o= Ntk+1

N 2w(t) “N+1
<C dt | 27N
< <k§_/ i ) 11,

_ > w(t
<o ™ [7 2,

<ACw. 27| flla, < 4Cwi(lA = BIDISIl,-
Hence, || f(A) — f(B)|| < 5Cw.(|A — B)|| ]y, as desired. O

10
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