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1 Introduction

This script will explain results from several papers of A.B. Aleksandrov and
V.V. Peller. The proofs for §1 are drawn from [1] and the proofs for §2 are
drawn from [2].

Recall the spectral theorem and functional calculus: If A is a self-adjoint
operator on a Hilbert space H, there is a projection-valued spectral measure
EA (Borel measure on R). Let B(R) be the space of bounded Borel functions
on R with the sup norm. For f ∈ B(R), we can define f(A) by

f(A) =

∫
R
f(λ) dEA(λ).

Our goal is to understand how smoothly f(A) depends on A. It’s a fact that
if f : R→ C is Lipschitz, then it is not necessarily operator Lipschitz, that is,

|f(s)− f(t)| ≤ C|s− t| for s, t ∈ R

does NOT imply
‖f(A)− f(B)‖ ≤ C ′‖A−B‖

for bounded self-adjoint operators on a Hilbert space. However, we will prove
that if f : R → C is Hölder continuous, then f is operator Hölder continuous,
and

‖f(A)− f(B)‖ ≤ C[f ]α‖A−B‖α,
where [f ]α is the α Hölder seminorm. We will also see what happens to uniformly
continuous f with an arbitrary modulus of continuity. Similar questions can be
asked about operator derivatives, higher order differences, and so forth.

2 Bernstein’s Inequality

Though the authors originally proved these results using tensor product esti-
mates, they later found a shorter proof using Bernstein’s inequality from com-
plex analysis. Let Eσ be the class of bounded functions f : R→ C such that f
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extends to an entire function f : C → C satisfying |f(z)| ≤ Cδe
(σ+δ)|z| for any

δ > 0. Then

Theorem 1 (Bernstein’s Inequality). If f ∈ Eσ, then

‖f ′‖L∞(R) ≤ σ‖f‖L∞(R).

In order to handle f(A) for a self-adjoint operator A, we extend Bernstein’s
inequality to X-valued functions for a Banach space X. If X is a Banach
space, then let Eσ(X) be the class of bounded functions f : R → X such that
φ(f(X)) ∈ Eσ for all φ ∈ X∗. Then we have

Theorem 2. If f ∈ Eσ(X), then

‖f(s)− f(t)‖X ≤ σ|s− t|‖f‖L∞(R,X) for s, t ∈ R.

We need some lemmas from complex analysis. The next two lemmas are
taken from [3, Lecture 6].

Lemma 3 (Phragmen-Lindelöf). Suppose that f is analytic on D = {reiθ : θ0 <
θ < θ0 + λ} and extends continuously to D. If |f(z)| ≤ Cec|z|

ρ

with ρ < π/λ
and |f(z)| ≤M on ∂D, then |f(z)| ≤M on D.

Proof. By rotation, assume that D = {reiθ : −λ/2 < θ < λ/2}. Let ρ < α <
π/λ. Note that the canonical choice of zα maps D analytically onto {reiθ : |θ| <
αλ/2 < π/2} and hence Re zα ≥ δ|z|α for some δ > 0. This implies that

|f(z)e−εz
α

| ≤ Cec|z|
ρ−εδ|z|α ,

which approaches zero as z → ∞. Since we also have |f(z)e−εz
α | ≤ |f(z)|

on ∂D, the maximum principle implies that |f(z)e−εz
α | ≤ M . Taking ε → 0

completes the proof.

Lemma 4. If f ∈ Eσ, then |f(z)| ≤ eσ| im z|‖f‖L∞(R).

Proof. Let us prove the inequality for the upper half-plane. The lower half-plane
is symmetrical. For δ > 0, note that ei(σ+δ)zf(z) is bounded on R by ‖f‖∞. We
also have ei(σ+δ)zf(z) ≤ Cδ for z on the imaginary axis. We apply Phragmen-
Lindelöf on the two quarter planes {0 < θ < π/2} and {π/2 < θ < π} with
λ = π/2, ρ = 1, to conclude that

|ei(σ+δ)zf(z)| ≤ max(‖f‖L∞(R), Cδ) for im z ≥ 0.

Next, since ei(σ+δ)zf(z) is bounded, we can apply Phragmen-Lindelöf on {0 <
θ < π} with λ = π and ρ = 0 to conclude that

|ei(σ+δ)zf(z)| ≤ ‖f‖L∞(R).

Taking δ → 0 completes the proof for the upper half-plane.
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Lemma 5. Suppose that f ∈ L∞(R). We have f ∈ E2πσ if and only if the
Fourier transform Ff is supported in [−σ, σ].

Proof. Suppose that Ff is supported in [−σ, σ]. From the nature of the Frechet
topology on the Schwarz class S and the duality between continuous functions
on [−σ, σ] with measures, we can deduce that

Ff =

n∑
j=0

(−1)j
dj

dtj
µj

for some finite complex Borel measures µj on [−σ, σ]. This implies that

f(z) =

n∑
j=0

∫ σ

−σ

dj

dtj
e2πizt dµj(t) =

n∑
j=0

(2πiz)j
∫ σ

−σ
e2πizt dµj(t).

Note that f extends to an entire function using Morera’s theorem and |f(z)| ≤
Cδ(1 + |z|)ne(2πσ+δ)| im z| for any δ > 0, which implies that f ∈ Eσ.

Conversely, suppose that f ∈ E2πσ. For im z ≥ 0, we have 1− iz in the right
half-plane, so we can define

√
1− iz to be holomorphic there with positive real

part. Moreover, Re
√

1− iz ≥ c|
√

1− iz| ≥ c
√
|z| for Re z ≥ 0. For ε > 0,

define
fε(z) = f(z)e−cε

√
1−iz for Re z > −1.

Note that

|fε(z)| ≤ |f(z)|e−cε
√
|z| ≤ ‖f‖L∞(R)e

−cε
√
|z|eσ| im z|.

In particular, fε ∈ L1(R). If t < −σ, then

Ffε(t) =

∫
R
fε(z)e

−2πitz dz.

Because the integrand is holomorphic on im z > −1, we have for R > 0∫ R

−R
fε(z)e

−2πitz dz = −
∫
γR

fε(z)e
−2πitz dz,

where γR is the semi-circular arc from R to −R in the upper half-plane. But∣∣∣∣∫
γR

fε(z)e
−2πitz dz

∣∣∣∣ ≤ ∫
γR

‖f‖L∞e
−cε
√
|z|e2π(−σ−t)| im z| |dz| ≤ ‖f‖L∞πRe

−cε
√
R

Taking R→ +∞ shows that

Ffε(t) =

∫
R
fε(z)e

−2πitz dz = 0 for t < −σ.

Therefore, Ffε is supported in [−σ,+∞). Because fε → f in S ′, we have Ffε →
Ff in S ′ and hence Ff is supported in [−σ,+∞). A symmetrical argument
shows that Ff vanishes for t > σ, so that Ff is supported in [−σ, σ].
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Lemma 6. Let zk = 1
2 (k+ 1

2 ) for k ∈ Z. Then gk(z) =
√

2 cos(2πz)/2π(z− zk)
is an orthonormal basis for E2π ∩ L2(R) in the L2 inner product.

Proof. By the last lemma and Plancherel’s theorem, the Fourier transform maps
E2π ∩ L2(R) isometrically onto L2([−1, 1]) ⊂ L2(R). An orthonormal basis for
L2([−1, 1]) is given by

hk(t) =
1√
2
χ[−1,1](t)e

−πi(k+1/2)t =
1√
2
χ[−1,1](t)e

−2πizkt, k ∈ Z.

Then

F−1hk(z) =
1√
2

[F−1χ[−1,1]](z − zk),

and

F−1χ[−1,1](z) =

∫ 1

−1

e2πizt dt =
1

πz
sin 2πz.

Hence, since zk = 1
2 (k + 1

2 ), we have

F−1hk(z) =

√
2 sin 2π(z − zk)

2π(z − zk)
=

(−1)k+1
√

2 cos 2πz

2π(z − zk)
= (−1)k+1gk(z),

which implies gk is an orthonormal basis for E2π ∩ L2(R).

Lemma 7. If f ∈ E2π ∩ L2(R) and gk is as above, then

〈f, gk〉L2(R) = (−1)k+1f(kπ + π/2).

In particular,

f(z) =
∑
k∈Z

(−1)k+1f(zk)
cos 2πz

2π(z − zk)
,

where the sum converges in L2(R).

Proof. Let fε be as in the proof of Lemma 5. For z ∈ R, let γ+
r (z) denote the

upper semicircle centered at z with radius r, oriented counterclockwise. By the
Cauchy integral formula, for r > 0 and R > r + |zk|,∫

[−R,R]\(zk−r,zk+r)

fε(z)
√

2e2πiz

2π(z − zk)
dz =

∫
γ+
r (zk)

fε(z)
√

2e2πiz

2π(z − zk)
dz−

∫
γ+
R(0)

fε(z)
√

2e2πiz

2π(z − zk)
dz.

Note that Ff ∈ L2([−1, 1]), hence in L1([−1, 1]), which implies

|f(z)| ≤ ‖Ff‖L1([−1,1])e
2π| im z|,

and hence |fε(z)| ≤ Ce2π| im z|e−ε
√
|z|. Thus, the integral over γ+

R (0) approaches
zero as R→ +∞, which implies∫

R\(zk−r,zk+r)

fε(z)
√

2e2πiz

z − zk
dz =

∫
γ+
r (zk)

fε(z)
√

2e2πiz

2π(z − zk)
dz.
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Because fε → f in L2(R) and locally uniformly on {im z ≥ 0} as ε→ 0, we have∫
R\(zk−r,zk+r)

f(z)
√

2e2πiz

2π(z − zk)
dz =

∫
γ+
r (zk)

f(z)
√

2e2πiz

2π(z − zk)
dz.

Observe that on {|z − zk| = r}, we have

f(z)
√

2e2πiz

2π(z − zk)
=
f(zk)

√
2e2πizk

2π(z − zk)
+O(1) =

i(−1)k
√

2f(zk)

2π(z − zk)
+O(1).

Therefore, ∫
R\(zk−r,zk+r)

f(z)
√

2e2πiz

2π(z − zk)
dz =

(−1)k+1

√
2

f(zk) +O(r).

A symmetrical computation for e−2πiz instead of e2πiz will yield the same an-
swer; averaging the two results,∫

R\(zk−r,zk+r)

f(z)
√

2 cos 2πz

2π(z − zk)
dz =

(−1)k+1

√
2

f(zk) +O(r).

Taking r → 0 with dominated convergence yields

〈f, gk〉 =
(−1)k+1

√
2

f(zk).

Therefore,

f(z) =
∑
z∈Z
〈f, gk〉gk(z) =

∑
k∈Z

(−1)k+1f(zk)
cos 2πz

2π(z − zk)
.

Theorem 8 (Bernstein’s inequality). Let f ∈ Eσ. Then

|f(s)− f(t)| ≤ σ|s− t|‖f‖L∞(R).

Proof. By rescaling the domain of f , we can assume that σ = 2π. Next, by
translating f , it suffices to show that

|f(z)− f(−z)| ≤ 2π · 2|z|‖f‖L∞(R) for z ≥ 0.

Define

F (z) =
f(z)− f(−z)

2z
.

Since f ∈ L∞(R), we have F ∈ L2(R), and clearly F ∈ E2π. Thus, by the
previous lemma,

F (z) =
∑
k∈Z

(−1)k+1F (zk)
cos 2πz

2π(z − zk)
=
∑
k∈Z

(−1)k+1 f(zk)− f(−zk)

2zk

cos 2πz

2π(z − zk)
.
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Hence, for z ∈ [0, 1/4], noting that zk(z − zk) < 0, we have

|F (z)| ≤ ‖f‖L∞(R)

∑
k∈Z

−1

zk

cos 2πz

2π(z − zk)

≤ ‖f‖L∞(R)

∑
k∈Z

(−1)k+1 sin(2πzk)− sin(−2πzk)

2zk

cos 2πz

2π(z − zk)

≤ ‖f‖L∞(R)

sin(2πz)− sin(−2πz)

2z
≤ ‖f‖L∞(R) · 2π,

where the last line follows from applying the preceding identity with f(z) =
sin 2πz. This complete the proof for z ∈ [0, 1/4]. On the other hand, for
z > 1/4,

|F (z)| ≤
‖f‖L∞(R)

|z|
≤ 4‖f‖L∞(R) ≤ 2π‖f‖L∞(R),

which is what we wanted to prove.

Corollary 9. If X is a Banach space and f ∈ Eσ(X), then

‖f(s)− f(t)‖X ≤ σ|s− t|‖f‖L∞(R,X) for s, t ∈ R.

Proof. Let (x, φ) denote the bilinear pairing between x ∈ X and φ ∈ X∗. For
any φ ∈ X∗, we know that (f(t), φ) ∈ Eσ. Therefore, by the previous theorem,

|(f(s)− f(t), φ)| ≤ σ|s− t|‖(f(·), φ)‖L∞(R) ≤ σ|s− t|‖f‖L∞(R,X).

Taking the supremum over φ on the left-hand side completes the proof.

Theorem 10. Let f ∈ Eσ, and let A and B be bounded self-adjoint operators
on a Hilbert space H. Then

‖f(A)− f(B)‖ ≤ σ‖A−B‖‖f‖L∞(R).

Proof. Define g : R → L(H) by g(z) = f(A + z(B − A)). We claim that
g ∈ Eσ(L(H)). By the spectral mapping theorem ‖f(A+z(B−A))‖ ≤ ‖f‖L∞(R)

for z ∈ R, so g is bounded on the real line. To check the exponential growth we
use power series. Note that by iterative application of Bernstein’s inequality,

‖f (k)‖L∞(R) ≤ σ
k‖f‖L∞ .

In particular,

f(z) =

∞∑
k=0

f (k)(0)

k!
zk with |f (k)(0)| ≤ σk‖f‖L∞(R).

Substituting A+ z(B −A) for z yields,

‖f(A+ z(B −A))‖ ≤ ‖f‖L∞
∞∑
k=0

σk

k!
‖A+ z(B −A)‖k

≤ ‖f‖L∞e
σ‖A+z(B−A)‖

≤ ‖f‖L∞e
σ‖A‖eσz‖B−A‖.
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This implies g ∈ Eσ‖A−B‖(L(H)). Therefore, by the previous result,

‖f(A)−f(B)‖ = ‖g(0)−g(1)‖ ≤ σ‖A−B‖‖g‖L∞(R,L(H)) = σ‖A−B‖‖f‖L∞(R).

Remark. It is in fact true even if A and B are unbounded, so long as A−B is
bounded. See [1, Theorem 5.4].

3 Operator Moduli of Continuity

A modulus of a continuity is a function ω : [0,+∞)→ [0,+∞) such that

• ω(0) = 0,

• ω(x) > 0 for x > 0,

• ω is increasing,

• ω is continuous,

• ω(x+ y) ≤ ω(x) + ω(y).

For f : R→ C, we define

‖f‖Λω = sup
x 6=y

|f(x)− f(y)|
ω(|x− y|)

,

and denote by Λω = Λω(R) the space of f for which this seminorm is finite.
For any modulus of continuity ω, there is another modulus of continuity ω∗

given by ω∗(0) = 0 and

ω∗(x) = x

∫ ∞
x

ω(t)

t2
dt for x > 0,

assuming the integral is finite for some x. Our goal is to prove

Theorem 11. If f ∈ Λω(R), and if A and B are bounded self-adjoint operators
on a Hilbert space, then

‖f(A)− f(B)‖ ≤ Cω∗(‖A−B‖)‖f‖Λω ,

where C is a universal constant.

Example. If ω(x) = xα for some α ∈ (0, 1), then ω∗(x) = (1− α)−1xα. Thus,
any Hölder continuous function on R is also operator Hölder continuous. If
ω(x) = min(x, c), then ω∗(x) = x(1/c+ log c− log x) for x < c.

Lemma 12. If ω is a modulus of continuity and ω∗ is finite, then ω∗ is a
modulus of continuity.
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Proof. Note that

ω∗(x) =

∫ ∞
1

ω(sx)

s2
ds,

and it follows that ω∗ is increasing and subadditive. It is clear that if x > 0,
then ω∗(x) > 0. Moreover, continuity is clear away from 0, so it remains to
show that ω∗(x) → 0 as x → 0. If

∫∞
0
ω(x)/x2 dx < ∞, then this would be

trivial. If
∫∞

0
ω(x)/x2 dx = +∞, then using L’Hopital’s rule,

lim
x→0+

∫∞
x
ω(y)/y2 dy

1/x
= lim
x→0+

−ω(x)/x2

−1/x2
= lim
x→0+

ω(x) = 0.

Our strategy for proving Theorem 11 will be to perform dyadic decompo-
sition on Ff . Using standard bump function constructions, we can create a
w ∈ C∞c (R, [0, 1]) supported in [1/2, 2] such that

w(x) = 1− w(x/2) for x ∈ [1, 2].

We observe that ∑
n∈Z

w(x/2n) + w(−x/2n) = 1 for x 6= 0,

and so we aim to write

f =
∑
n∈Z
F−1(Ff · w(x/2n)) +

∑
n∈Z
F−1(Ff · w(−x/2n)).

(Technically, this is only true up to a term with Fourier transform supported at
0, i.e. a polynomial.) Then because Ff · w(x/2n) is supported in in [−2n, 2n],
we can apply the operator Bernstein’s inequality to F−1(Ff ·w(x/2n)), and the
same with w(x/2n) replaced by w(−x/2n).

We introduce the following notation: We define v ∈ C∞c (R) by

v(x) =

{
1, |x| ≤ 1,

w(|x|), |x| ≥ 1.
,

and define

W+
n = F−1[w(x/2n)]

W−n = F−1[w(−x/2n)]

Vn = F−1[v(x/2n)].

Then in S ′, we have

FVN +
∑
n<N

(FW+
n + FW−n ) = 1,

so heuristically at least

f = VN ∗ f +
∑
n<N

(W+
n ∗ f +W−n ∗ f).

Now let us give the details of the argument.
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Lemma 13. There is a universal constant C > 0 such that

‖f − Vn ∗ f‖L∞(R) ≤ Cω(2−n)‖f‖Λω(R)

‖W+
n ∗ f‖L∞(R) ≤ Cω(2−n)‖f‖Λω(R)

‖W−n ∗ f‖L∞(R) ≤ Cω(2−n)‖f‖Λω(R).

Proof. Note that if f ∈ Λω(R), then subaddivity of ω implies that |ω(x)| ≤ B|x|
for some constant B and hence |f(x)| ≤ A+B|x| for some constants A and B.
Since Vn is a Schwarz function, we can express f ∗Vn using Lebesgue integration.
Moreover, since

∫
Vn = v(0) = 1, we have

|f(x)− Vn ∗ f(x)| =
∣∣∣∣∫

R
[f(x)− f(x− y)]Vn(y) dy

∣∣∣∣
=

∣∣∣∣2n ∫
R
[f(x)− f(x− y)]V0(2ny) dy

∣∣∣∣
≤ ‖f‖Λω

∫
R

2nω(|y|)|V0(2ny)| dy.

Break the integral into three regions (−∞,−2−n), [2−n, 2−n], and (2−n,+∞),
and then combine the two outer terms:

|f(x)−Vn∗f(x)| ≤ ‖f‖Λω

(
2n
∫ 2−n

−2−n
ω(|y|)|V0(2ny)| dy + 2n+1

∫ +∞

2−n
ω(|y|)|V0(2ny)| dy

)
.

The first integral can clearly be estimated by ω(2−n)‖V0‖L1(R). For the second

term, we observe that since y ≥ 2−n and choose k ≥ −n such that 2k ≤ y <
2k+1, so that

ω(y) ≤ ω(2k+1) = ω(2n+k+1 · 2−n) ≤ 2n+k+1ω(2−n) ≤ 2n+1yω(2−n).

Therefore,

2n+1

∫ +∞

2−n
ω(y)|V0(2ny)| dy ≤ 4

∫ ∞
2−n

ω(2−n)2ny|V0(2ny)| 2ndy

≤ 4ω(2−n)

∫ ∞
1

y|V0(y)| dy ≤ Cω(2−n).

This implies |f(x) − Vn ∗ f(x)| ≤ C‖f‖Λωω(2−n). To prove the estimates for

W±n , note that
∫
W±n = 0 since the Fourier transform vanishes at the origin,

and hence

f ∗W±n (x) =

∫
R

[f(x)− f(x− y)]W±n (y) dy,

and therefore we can use the same argument as for Vn.
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Proof of Theorem 11. Let A and B be bounded self-adjoint operators, f ∈ Λω.
Since A and B are bounded, we can modify f for large x to make f bounded,
without increasing ‖f‖Λω . Note that for M < N , we have

f(A) = (f − f ∗ VN )(A) +

N∑
n=M+1

fn(A) + f ∗ VM (A),

where fn = f ∗W+
n + f ∗W−n . Of course, the same holds for B, hence,

‖f(A)−f(B)‖ ≤ 2‖f−f∗VN‖L∞(R)+

N∑
n=M+1

‖fn(A)−fn(B)‖+‖f∗VM (A)−f∗VM (B)‖.

Now f ∗ VM has Fourier transform supported in [−2M+1, 2M+1], so by the op-
erator Bernstein’s inequality,

‖f ∗ VM (A)− f ∗ VM (B)‖ ≤ 2M+1‖f ∗ VM‖L∞(R)‖A−B‖

≤ 2M+1‖f‖L∞(R)‖V0‖L1(R)‖A−B‖

→ 0 as M → −∞.

Thus, taking M → −∞ in the above inequality, we have

‖f(A)− f(B)‖ ≤ 2‖f − f ∗ VN‖L∞(R) +

N∑
n=−∞

‖fn(A)− fn(B)‖.

Choose N so that 2−N ≤ ‖A−B‖ < 2−N+1, and observe that

2‖f − f ∗ VN‖L∞(R) ≤ Cω(2−N )‖f‖Λω ≤ Cω∗(‖A−B‖)‖f‖Λω .

For the other terms, apply the operator Bernstein inequality to fn to conclude
that

N∑
n=−∞

‖fn(A)− fn(B)‖ ≤
N∑

n=−∞
2n+1‖A−B‖‖fn‖L∞(R)

≤ C
N∑

n=−∞
2n+1‖A−B‖ω(2−n)‖f‖Λω

≤ C

( ∞∑
k=0

ω(2−N+k)

2−N+k

)
‖A−B‖‖f‖Λω

≤ C

( ∞∑
k=0

∫ 2−N+k+1

2−N+k

2ω(t)

t2
dt

)
2−N+1‖f‖Λω

≤ C · 4 · 2−N
∫ ∞

2−N

ω(t)

t2
dt · ‖f‖Λω

≤ 4Cω∗(2
−N )‖f‖Λω ≤ 4Cω∗(‖A−B‖)‖f‖Λω .

Hence, ‖f(A)− f(B)‖ ≤ 5Cω∗(‖A−B‖)‖f‖Λω as desired.

10



References

[1] A.B. Aleksandrov and V.V. Peller. “Functions of Perturbed Unbounded
Self-Adjoint Operators. Operator Bernstein Type Inequalities.”

[2] A. B. Aleksandrov and V.V. Peller. “Operator Hölder-Zygmund Func-
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